Skip to main content

Advertisement

Log in

Detection of One-Lung Intubation Incidents

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Lung sounds are very common source for monitoring and diagnosis of pulmonary function. This approach can be used for detecting one lung intubation (OLI) during anesthesia or intensive care. In this paper, an algorithm for detecting OLI from lung sounds is presented. The algorithm assumes a multiple-input-multiple-output system, in which a multi-dimensional auto-regressive model relates the input (lungs) and the output (recorded sounds). An OLI detector is developed based on the generalized likelihood ratio test (GLRT), assuming coherent distributed sources for each lung. This method exhibited reliable results also when the lungs were modeled by incoherent distributed sources, which is a more accurate model for lung sources. The algorithm was tested using real breathing sounds recorded in an operating room, and it achieved an OLI detection rate of more than 95%, for each breathing cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Akiake, H. Information theory and an extension of the maximum likelihood principle. In: Proc. 2nd Int. Symp. Inform. Theory, 1973, pp. 267–281.

  2. Akiake H. A new look at the statistical model identification. IEEE Trans. Automat. Contr.19(6):716–723, 1974. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  3. Cohen A. (1986) Biomedical Signal Processing. CRC Press, Florida

    Google Scholar 

  4. Cohen A., A. Berstein (1991) Acoustic transmission of the respiratory system using speech stimulation. IEEE Trans. Bio-Med Eng. 38(2):126–132. doi:10.1109/10.76377

    Article  CAS  Google Scholar 

  5. Cohen, A., and D. Landsberg. Analysis and automatic classification of breathing sounds. IEEE Trans. Bio-Med Eng. 31(9):585–590, 1984. doi:10.1109/TBME.1984.325301

    Article  CAS  Google Scholar 

  6. Harmanci K., J. Tabrikian, and J. L. Krolik. Relationships between adaptive minimum- variance beamforming and optimal source localization. IEEE Trans. Signal Proces., 48(1):1–13, 2000. doi:10.1109/78.815474

    Article  Google Scholar 

  7. Heinonen J., S. Takki, and T. Tammisto. Effect of the trendelenburg tilt and other procedures on the position of endotracheal tubes. Lancet 1:850–853, 1969. doi:10.1016/S0140-6736(69)91898-4

    Article  PubMed  CAS  Google Scholar 

  8. Iyer V. K., P.A. Rammoorthy, and Y. Ploysongsang. Autoregressive modeling of lung sounds: characterization of source and transmission. IEEE Trans. Bio-Med Eng. 36(11):1133–1137, 1989. doi:10.1109/10.40821

    Article  CAS  Google Scholar 

  9. Juan E. J., J. P. Mansfield and G. R. Wodica. Miniature acoustic guidance system for endotracheal tubes. IEEE Trans. Bio-Med. Eng. 49(6):584–596, 2002. doi:10.1109/TBME.2002.1001973

    Article  Google Scholar 

  10. Kay, S. Fundamentals of Statistical Signal Processing, Vol. II. Prentice Hall, 1998.

  11. Makhoul J. Linear prediction: a tutorial review. Proc. IEEE, 63(4):561–580, 1975. doi:10.1109/PROC.1975.9792

    Article  Google Scholar 

  12. Mansy H. A., C. J. O’Connor, R. A. Balk, and R. H. Sandler. Breath sound changes associated with malpositioned endotracheal tubes. Med. Bio. Eng. Comp. 43:206–211, 2005. doi:10.1007/BF02345956

    Article  CAS  Google Scholar 

  13. Mansy H. A., T. J. Royston, R. A. Balk, and R. H. Sandler. Pneumothorax detection using computerized analysis of breath sounds. Med. Bio. Eng. Comp. 40:529–532, 2002.

    Google Scholar 

  14. O’Connor C. J., H. A. Mansy, R. A. Balk, K. J. Tuman, and R. H. Sandler, Identification of endotracheal tube malpositions using computerized analysis of breath sounds via electronic stethoscopes. Anesth. Analg., 101:735–739, 2005. doi:10.1213/01.ane.0000167068.71601.e4

    Article  PubMed  Google Scholar 

  15. Ploy-Song-Sang, Y., P. T. Macklen, and W.R.D. Ross. Distribution of regional ventilation measured by breath sounds. Amer. Rev. Resp. Dis. 117:657–664, 1978.

    PubMed  CAS  Google Scholar 

  16. Räsänen J. O., G. Rosenhouse, and N. Gavrieli, Effects of diameter, length and circuit pressure on sound conductance through endotracheal tube, IEEE Trans. Bio-Med Eng. 53(7):1255–1264, 2006. doi:10.1109/TBME.2006.875667

    Article  Google Scholar 

  17. Rissanen J. Modeling by shortest data description. Automatica 14:465–471, 1978. doi:10.1016/0005-1098(78)90005-5

    Article  Google Scholar 

  18. Routtenberg, T., and J. Tabrikain. MIMO-AR system identification and blind source separation using GMM. To appear in: Proc. of 32nd Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2007.

  19. Runciman, W. B., R. K. Webb, L. Barker, and M. Currie. The pulse oximeter: applications and limitations—An analysis of 2000 Incident Reports. Anesth. Intensive Care 21:543–550, 1993.

    CAS  Google Scholar 

  20. Schwartz G. Estimating the dimension of a model. Ann. Stat. 6:461–464, 1978. doi:10.1214/aos/1176344136

    Article  Google Scholar 

  21. Sod-Moriah, G., O. Gelber, G. Gurman, and A. Cohen. Monitoring of separate lung ventilation in anesthesia and intensive care. In: 18th Convention of Electrical and Electronics Engineers in Israel, 1995 (Available at: http://ieeexplore.ieee.org/servlet/opac?punumber=3899).

  22. Szekely S. M., R.K. Webb, J.A. Williamson, and W. J. Russell. The Australian Incident Monitoring Study. Problems related to the endotracheal tube: an analysis of 2000 incident reports. Anesth Intensive Care 21:611–6, 1993.

    CAS  Google Scholar 

  23. Tejman-Yarden S., D. Lederman, I. Eilig, A. Zlotnik, N. Weksler, A. Cohen, and G. M. Gurman. Acoustic monitoring of double-lumen ventilated lungs for the detection of selective unilateral lung ventilation. Anesth. Analg. 103:1489–1493, 2006. doi:10.1213/01.ane.0000240909.48774.49

    Article  PubMed  Google Scholar 

  24. Tejman-Yarden S., A. Zlotnik, L. Weizman, J. Tabrikian, A. Cohen, N. Weksler, and G. M. Gurman. Acoustic monitoring of lung sounds for the detection of one lung intubation. Anesth. Analg., 105:397–404, 2007. doi:10.1213/01.ane.0000267263.40505.c0

    Article  PubMed  CAS  Google Scholar 

  25. Wahba G., and S. Wold. A completely automatic french curve: Fitting spline by functions by cross-validation. Comm. in statistics. 4:1–17, 1975.

    Article  Google Scholar 

  26. Webb, R. K., J. H. van der Walt, W. B. Runciman, J. A. Williamson et al. Which monitor? An analysis of 2000 incident reports. Anesthesia and Intensive Care 21:529–542, 1993.

    CAS  Google Scholar 

  27. Webster, T. A. Now that we have pulse oximeters and capnographs, we don’t need precordial and esophageal stethoscope. J. Clin. Monitor. 3:191–192, 1987. doi:10.1007/BF01695942

    Article  CAS  Google Scholar 

  28. Weizman, L. Detection of One-Lung Intubation Incidents, M.Sc. Thesis. Ben-Gurion University of the Negev, Dept. of Electrical and Computer Engineering, Beer-Sheva, Israel, 2004. (Available at: http://www.ee.bgu.ac.il/~spl/publication/theses.htm).

  29. Weizman L., J. Tabrikian, and A. Cohen. Detection of one lung intubation by monitoring luns sounds. In: Proc. of the 24th Annual International Conference of the IEEE EMBC. San-Francisco, CA, USA, pp. 917–920, 2004.

  30. Wodicka G. R., P. D. DeFrain and S. S. Kraman. Bilateral asymmetry of respiratory acoustic transmission. Med. Bio. Eng. Comp. 32(5):489–494, 1994. doi:10.1007/BF02515306

    Article  CAS  Google Scholar 

  31. Wodicka G.R., and H.L. Golub. A model of acoustic transmission in the respiratory system. IEEE Trans. Bio-Med Eng. 36(9):925–934, 1989. doi:10.1109/10.35301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. G. Gurman, Dr. S. Teiman and Dr. A. Zlotnik from the Soroka University Medical Center—Israel, for their contribution with collecting the real data and supporting the medical part of the paper. While completing this paper, Professor Arnon Cohen, head of the signal processing laboratory in Ben-Gurion University had passed away. By publishing this paper we continue Prof. Cohen’s legacy of honest and fair research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Tabrikian.

Appendix A: Proof of (9)

Appendix A: Proof of (9)

Maximization of (8) with respect to the unknown matrix, A, is achieved via equating the corresponding partial derivative to zero. The last term of (8) is relevant to calculate the derivative of the log-likelihood with respect to A:

$$ \begin{aligned} &-\frac{1}{2}\sum_{n=1}^N {\left[ {\left( {{\mathbf{y}}[n]-{\mathbf{Ay}}^{\left( M \right)}[n]} \right)^{T}{\mathbf{R}}^{-1}\left( {{\mathbf{y}}[n]-{\mathbf{Ay}}^{\left( M \right)}[n]} \right)}\right]}\\ =&-\frac{1}{2}\sum_{n=1}^N \left[{{\mathbf{y}}^{T}[n]{\mathbf{R}}^{-1}{\mathbf{y}}[n]-{\mathbf{y}}^{\left( M\right)T}[n]{\mathbf{A}}^{T}{\mathbf{R}}^{-1} {\mathbf{y}}[n]-{\mathbf{y}}^{T}[n]{\mathbf{R}}^{-1}{\mathbf{Ay}}^{\left( M \right)}[n]+\left( {{\mathbf{Ay}}^{\left( M \right)}[n]} \right)^{T}{\mathbf{R}}^{-1}{\mathbf{Ay}}^{\left( M \right)}[n]}\right]. \\ \end{aligned} $$
(28)

The derivative of a scalar c with respect to a matrix A is defined as a matrix whose ij-th element is given by \(\left[ {\frac{\partial c}{\partial {\bf A}}} \right]_{ij} =\frac{\partial c}{\partial A_{ij} }.\) We shall use the following identities (for proof of non-trivial identities, see Makhoul11):

$$ \frac{\partial }{\partial {\mathbf{A}}}\left[ {{\mathbf{x}}^{T}{\mathbf{Ay}}} \right]=\frac{\partial }{\partial {\mathbf{A}}}\left[ {{\mathbf{y}}^{T}{\mathbf{A}}^{T}{\mathbf{x}}} \right]={\mathbf{xy}}^{T}, $$
(29)
$$ \frac{\partial }{\partial {\mathbf{A}}}\left[ {({\mathbf{Ax}})^{T}{\mathbf{C}}({\mathbf{Ax}})} \right]=({\mathbf{C}}+{\mathbf{C}}^{T})({\mathbf{Ax}}){\mathbf{x}}^{T}. $$
(30)

The derivative of (28) w.r.t. A is calculated using (29) and (30), and thus, the derivative of (8) can be written as

$$ \begin{aligned}\frac{\partial }{\partial {\mathbf{A}}}\hbox{log}(f({\mathbf{y}}[1],\ldots,{\mathbf{y}}[N]|{\mathbf{R}},{\mathbf{A}})=\\ -\frac{1}{2}\sum_{n=1}^N {\left[ {-{\mathbf{R}}^{-1}{\mathbf{y}}[n]{\mathbf{y}}^{\left( M \right)T}[n]-{\mathbf{R}}^{-T}{\mathbf{y}}[n]{\mathbf{y}}^{\left( M \right)T}[n]+\left( {{\mathbf{R}}^{-1}+{\mathbf{R}}^{-T}} \right){\mathbf{Ay}}^{\left( M \right)}[n]{\mathbf{y}}^{\left( M \right)T}[n]} \right]}.\\ \end{aligned} $$
(31)

In order to find the ML estimator of A, the above derivative should be equated to zero. Since R is a covariance matrix, then \({\mathbf{R}}={\mathbf{R}}^{T}\) and \({\mathbf{R}}^{-1}={\mathbf{R}}^{-T}.\) Therefore we obtain the following equation:

$$ -\frac{1}{2}\sum_{n=1}^N {\left[ {-2{\mathbf{R}}^{-1}{\mathbf{y}}[n]{\mathbf{y}}^{\left( M \right)T}[n]+2{\mathbf{R}}^{-1}\hat{{\mathbf{A}}}_{\rm ML} {\mathbf{y}}^{\left( M \right)}[n]{\mathbf{y}}^{\left( M \right)T}[n]} \right]} ={\mathbf{0}}. $$
(32)

Equation (9) can be obtained by solving (32) for \(\hat{{\mathbf{A}}}_{\rm ML}\) under the assumption that the matrix \(_{ }\sum_{n=1}^N {{\mathbf{y}}^{\left( M \right)}[n]{\mathbf{y}}^{\left( M \right)T}[n]}\) is invertible.\(\hfill\square\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weizman, L., Tabrikian, J. & Cohen, A. Detection of One-Lung Intubation Incidents. Ann Biomed Eng 36, 1844–1855 (2008). https://doi.org/10.1007/s10439-008-9550-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9550-8

Keywords

Navigation