Skip to main content
Log in

Optimal Transvenous Coil Position on Active-can Single-coil ICD Defibrillation Efficacy: A Simulation Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The implantable cardioverter defibrillator with an active can and a single coil lead is effective in treating ventricular fibrillation, but the lead placement associated with the high defibrillation efficacy is still controversial and remains largely empirical. In this study, an anatomically realistic finite difference model of the thorax was developed based on MRI cross-sectional images of a human thorax to examine the effect of transvenous coil placement on defibrillation efficacy. Four electrode configurations with the coil was placed, respectively, in the right ventricular (RV) apex, in the middle of RV cavity, along the free wall in RV, or along the septal wall in RV, were simulated and their defibrillation efficacies were evaluated based on a set of metrics including voltage defibrillation threshold, current defibrillation threshold, interelectrode impedance, potential gradient distribution uniformity, current density distribution, and myocardium damage. It was found that the optimal electrode configuration is to position the coil in the middle of the RV cavity. The results were compared with the results from a simplified thoracic model. The comparison indicates that for a given electrode configuration a simplified representation of the thorax may overestimate defibrillation efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aguel F., Eason J. C., Trayanova N. A., Siekas G., Fishler M. G. (1999) Impact of transverous lead position on active can ICD defibrillation: a computer simulation study. Pacing Clin. Electrophysiol. 22:158–164

    Article  PubMed  CAS  Google Scholar 

  2. Babbs C. F., Tacker W. A., VanVleet J. F., Bourland J. D., Geddes L. A. (1989) Therapeutic indices for transchest defibrillator shocks: Effective, damaging, and lethal electrical doses. Am. Heart. J. 99:734–738

    Article  Google Scholar 

  3. Bardy G. H., Troutman C., Johnson G. (1991) Electrode system influence on biphasic waveform defibrillation efficacy in humans. Circulation 84:665–671

    PubMed  CAS  Google Scholar 

  4. Cappato R. (1999) Secondary prevention of sudden death: the Dutch study, the antiarrhythmics versus implantable defibrillator trial, the cardiac arrest study Hamburg, and the Canadian implantable defibrillator study. Am. J. Cardiol. 83:68D–73D

    Article  PubMed  CAS  Google Scholar 

  5. Claydon F. J., Pikington T. C., Tang A. S. L., Morrow M. N., Ideker R. E. (1988) A volume conductor model of the thorax for the study of defibrillation fields. IEEE Trans. Biomed. Eng. 35:981–992

    Article  PubMed  Google Scholar 

  6. Eason J., Schmidt J., Dabasinskas A., Siekas G., Aguel F., Trayanova N. (1998) Influence of anisotropy on local and global measures of potential gradient in computer models of defibrillation. Ann. Biomed. Eng. 26:840–849

    Article  PubMed  CAS  Google Scholar 

  7. Frazier D. W., Wolf P. D., Wharton J. M., Tang A. S. L., Smith W. M., Ideker R. E. (1989) Stimulus-induced critical point: Mechanism for electrical initiation of reentry in normal canine myocardium. J. Clin. Invest. 83:1039–1052

    Article  PubMed  CAS  Google Scholar 

  8. Gabriel S., Lau R. W., Gabriel C. (1996) The dielectric properties of biological tissue: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:2251–2269

    Article  PubMed  CAS  Google Scholar 

  9. Geddes L. A., Baker E. L. (1967) The specific resistance of biological material-a compendium of data for the biomedical engineer and physiologist. Med. & Biol. Engng. 5:271–293

    Article  PubMed  CAS  Google Scholar 

  10. Geddes L. A., Tacker W. A., Rosborough J. P., Moors A. G., Cabler P. S. (1974) Electrical dose for ventricular defibrillation of large and small animals using precordial electrodes. Clin. Invest. 53:310–319

    Article  CAS  Google Scholar 

  11. Gold M. R., Foster A. H., Shorofsky S. R. (1996) Effects of an active pectoral-pulse generator shell on defibrillation efficacy with a transvenous lead system. Am. J. Cardiol. 78:540–543

    Article  PubMed  CAS  Google Scholar 

  12. Gold M. R., Foster A. H., Shorofsky S. R. (1997) Lead system optimization for transvenous defibrillation. Am. J. Cardiol. 80(9):1163–1167

    Article  PubMed  CAS  Google Scholar 

  13. Gold M. R., Olsovsky M. R., Degroot P. J., Cuello C., Shorofsky S. R. (2000) Optimization of transvenous coil position for active can defibrillation thresholds. J. Cardiovasc. Electrophysiol. 11(1):25–29

    Article  PubMed  CAS  Google Scholar 

  14. Holzer J. R., Fong L. E., Sidorov V. Y., Wikswo J. P., Baudenbacher F. (2004) High resolution magnetic images of planar wave fronts reveal bidomain properties of cardiac tissue. Biophys. J. 87:4326–4332

    Article  PubMed  CAS  Google Scholar 

  15. Ideker R. E., Wolf P. D., Alferness C., Krassowska W., Smith W. M. (1991) Current concepts for selecting the location, size, and shape of defibrillation electrodes. Pacing Clin. Electrophysiol. 14:227–240

    Article  PubMed  CAS  Google Scholar 

  16. Jones J. L., Jones R. E., Balasky G. (1987) Microlesion formation in myocardial cells by high-intensity electric field stimulation. Heart Circ. Physiol. 22:H480–H486

    Google Scholar 

  17. Jongh A. L. D., Entcheva E. G., Replogle J. A., Booker P. S., Kenknight B. H., Claydon F. (1999) Defibrillation efficacy of different electrode placements in a human thorax model. Pacing Clin. Electrophysiol. 22:152–157

    Article  PubMed  Google Scholar 

  18. Karlon W. J., Eisenberg S. R., Lehr J. L. (1993) Effect of paddle placement and size on defibrillation current distribution: A three dimensional finite element method. IEEE Trans. Biomed. Eng. 40:246–255

    Article  PubMed  CAS  Google Scholar 

  19. Kinst T. F., Sweeney M. O., Lehr J. L., Eisenbery S. R. (1997) Simulated internal defibrillation in humans using an anatomically realistic three-dimensional finite element model of the thorax. J. Cardiovasc. Electrophysiol. 8:537–547

    Article  PubMed  CAS  Google Scholar 

  20. Knisley S. B., Trayanova N., Aguel F. (1999) Roles of electric field and fiber structure in cardiac electric stimulation. Biophys. J. 77(3):1404–1417

    Article  PubMed  CAS  Google Scholar 

  21. Kodama I., Shibata N., Sakuma I., Mitsui K., Iida M., Suzuki R., Fukui Y., Hosoda S., Toyama J. (1994) Aftereffects of high-intensity DC stimulation on the electromechanical performance of ventricular muscle. Am. J. Physiol. Heart. Circ. Physiol. 36:H248–H258

    Google Scholar 

  22. Krum D., Hare J., Mughal K., Jazayeri M. R., Deshpande S., Dhala A., Blanck Z., Akhtar M., Sra J. (1998) Optimization of shocking lead configuration for transvenous atrial defibrillation. J. Cardiovasc. Electrophysiol. 9(9):998–1003

    Article  PubMed  CAS  Google Scholar 

  23. Lee K. L., Hafley G., Fisher J. D. (2002) Multicenter unsustained tachycardia trial investigator: effect of implantable defibrillators on arrhythmic events and mortality in the multicenter unsustained tachycardia trial. Circulation 106:233–238

    Article  PubMed  Google Scholar 

  24. Lepeschkin E., Jones J., Rush S. (1978) Local potential gradients as a unifying measure for thresholds of stimulation, standstill, tachyarrhythmia and fibrillation appearing after strong capacitor discharges. Adv. Cardiol. 21:268–278

    PubMed  CAS  Google Scholar 

  25. Mocanu D., Kettenbach J., Sweeney M. O., Kikinis R., Kenknight B. H., Eisenberg S. R. (2004) A comparison of biventricular and conventional transvenous defibrillation: A computational study using patient derived models. Pacing Clin. Electrophysiol. 27:586–593

    Article  PubMed  Google Scholar 

  26. Modre R., Seger M., Fischer G., Hintermüller C., Hayn D., Pfeifer B., Hanser F., Schreier G., Tilg B. (2006) Cardiac anisotropy: is it negligible regarding noninvasive activation time imaging? IEEE Tran. Biomed. Eng. 53:569–580

    Article  PubMed  Google Scholar 

  27. Nikolski V. P., Sambelashvili A. T., Efimov I. R. (2001) Mechanisms of make and break excitation revisited: paradoxical break excitation during diastolic stimulation. Am. J. Physiol. Heart. Circ. Physiol. 282:565–575

    Google Scholar 

  28. Olsovsky M. R., Kavesh N. G., Pelini M. A., Shorofsky S. R., Gold M. R. (1997) Optimization of active can defibrillation lead systems. Circulation 96(8):3242–3242

    Google Scholar 

  29. Plonsey R., Heppner D. B. (1967) Considerations of quasistationarity in electrophysiological systems. Bull. Math. Biophys. 29(4):657–664

    Article  PubMed  CAS  Google Scholar 

  30. Raitt M.H., Johnson G., Dolack G.L. (1995) Clinical predictors of the defibrillation threshold with the unipolar impantable defibrillation system. J. Am. Coll. Cardiol. 25:1576–1583

    Article  PubMed  CAS  Google Scholar 

  31. Rashba E. J., Shorofsky S. R., Peters R. W., Gold M. R. (2004) Optimization of atrial defibrillation with a dual-coil, active pectoral lead system. J. Cardiovasc. Electrophysiol. 15(7):790–794

    Article  PubMed  Google Scholar 

  32. Sakuma I., Haraguchi T., Ohuchi K., Fukui Y., Kodama I., Toyama J., Shibata N., Hosoda S. (1998) A Model Analysis of Aftereffects of High-Intensity DC Stimulation on Action Potential of Ventricular Muscle. IEEE Trans. Biomed. Eng. 45:258–267

    Article  PubMed  CAS  Google Scholar 

  33. Salazar Y., Bragos R., Casas O., Cinca J., Rosell J. (2004) Transmural versus nontransmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium. IEEE Trans. Biomed. Eng. 51(8):1421–1427

    Article  PubMed  Google Scholar 

  34. Sepulveda N. G., Wikswo J. P., Echt D. S. (1990) Finite element analysis of cardiac defibrillation current distribution. IEEE Trans. Biomed. Eng. 37:354–365

    Article  PubMed  CAS  Google Scholar 

  35. Sharma V., Susil R. C., Tung L. (2005) Paradoxical Loss of Excitation with High Intensity Pulses during Electric Field Stimulation of Single Cardiac Cells. Biophys. J. 88:3038–3049

    Article  PubMed  CAS  Google Scholar 

  36. Singer I., Goldsmith J., Maldonado C. (1995) Transseptal defibrillation is superior for transvenous defibrillation. Pacing Clin. Electrophysiol. 18:229–232

    Article  PubMed  CAS  Google Scholar 

  37. Stanton M. S., Hayes D. L., Munger T. M. (1994) Consistent subcutantous prepectoral implantation of a new implantable cardioverter defibrillator. Mayo Clin. Proc. 69:309–314

    PubMed  CAS  Google Scholar 

  38. Wang Y., Haynor D. R., Kim Y. (2001) An investigation of the importance of myocardial anisotropy in finite-element modeling of the heart: methodology and application to the estimation of defibrillation efficacy. IEEE Tran. Biomed. Eng. 48:1377–1389

    Article  PubMed  CAS  Google Scholar 

  39. Wang L., Patterson R. P. (1995) Multiple sources of the impedance cardiogram based on 3-D finite difference human thorax models. IEEE Trans. Biomed. Eng. 42:141–148

    Article  PubMed  CAS  Google Scholar 

  40. Witkowski F. X., Penkoske P. A., Plonsey R. (1990) Mechanism of cardiac defibrillation in open-chest dogs with unipolar dc-coupled simultaneous activation and shock potential recordings. Circulation 82(1):244–260

    PubMed  CAS  Google Scholar 

  41. Witsoe A. D., Kinnen E. (1966) Electrical resistivity of lung at 100 kHz. Med. & Biol. Engng 5:239–248

    Article  Google Scholar 

  42. Yabe S., Smith W. M., Daubert J. P., Wolf P. D., Rollins D. L., Ideker R. E. (1990) Conduction distribution caused by high current density electric fields. Circ. Res. 66:1190–1203

    PubMed  CAS  Google Scholar 

  43. Yang F., Patterson R. P. (2007) The contribution of the lungs to thoracic impedance measurements: a simulation study based on a high resolution finite difference model. Physiol. Meas. 28:S153–S161

    Article  PubMed  Google Scholar 

  44. Yang F., Patterson R. P. (2008) A simulation study on the effect of thoracic conductivity inhomogeneities on sensitivity distributions. Ann. Biomed. Eng. 36(5):762–768

    Article  PubMed  Google Scholar 

  45. Zhang E., Shao S., Webster J. (1984) Impedance of skeletal muscle from 1 Hz to 1 MHz. IEEE Trans. Biomed. Eng. BME-31(6):477–481

    Article  Google Scholar 

  46. Zipes D. P., Fischer J., King R. M., Nicoll A., Jolly W. W. (1975) Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am. J. Cardiol. 36:37–44

    Article  PubMed  CAS  Google Scholar 

  47. Zipes D. P., Wyse D. G., Friedman P. L. (1997) A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N. Engl. J. Med. 337:1576–1583

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Minnesota Supercomputing Institute for the computation resources. This study was supported in part by a gift from Earl Bakken, founder of Medtronic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Patterson, R. Optimal Transvenous Coil Position on Active-can Single-coil ICD Defibrillation Efficacy: A Simulation Study. Ann Biomed Eng 36, 1659–1667 (2008). https://doi.org/10.1007/s10439-008-9548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9548-2

Keywords

Navigation