Skip to main content
Log in

Modeling the Nonlinear Dynamic Interactions of Afferent Pathways in the Dentate Gyrus of the Hippocampus

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The dentate gyrus is the first region of the hippocampus that receives and integrates sensory information (e.g., visual, auditory, and olfactory) via the perforant path, which is composed of two distinct neuronal pathways: the Lateral Perforant Path (LPP) and the Medial Perforant Path (MPP). This paper examines the nonlinear dynamic interactions among arbitrary stimulation patterns at these two afferent pathways and their combined effect on the resulting response of the granule cells at the dentate gyrus. We employ non-parametric Poisson–Volterra models that serve as canonical quantitative descriptors of the nonlinear dynamic transformations of the neuronal signals propagating through these two neuronal pathways. These Poisson–Volterra models are estimated in the so-called “reduced form” with experimental data from in vitro hippocampal slices and provide excellent predictions of the electrophysiological activity of the granule cells in response to arbitrary stimulation patterns. The data are acquired through a custom-made multi-electrode-array system, which stimulated simultaneously the two pathways with random impulse trains and recorded the neuronal postsynaptic activity at the granule cell layer. The results of this study show that significant nonlinear interactions exist between the LPP and the MPP that may be critical for the integration of sensory information performed by the dentate gyrus of the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abraham W. C., Mason-Parker S. E., Bear M. F., Webb S., Tate W. P. (2001) Heterosynaptic metaplasticity in the hippocampus in vivo: a bcm-like modifiable threshold for ltp. Proc. Natl. Acad. Sci. USA 98(19):10924–10929

    Article  PubMed  CAS  Google Scholar 

  2. Abraham W. C., McNaughton N. (1984) Differences in synaptic transmission between medial and lateral components of the perforant path. Brain Res. 303(2):251–260

    Article  PubMed  CAS  Google Scholar 

  3. Andersen P., Bliss T. V., Skrede K. K. (1971) Unit analysis of hippocampal population spikes. Exp. Brain Res. 13(2):208–221

    PubMed  CAS  Google Scholar 

  4. Andersen P., Gross G. N., Lomo T., Sveen O. (1961) Participation of inhibitory and excitatory interneurones in the control of hippocampal cortical output. UCLA Forum Med. Sci. 11:415–465

    Google Scholar 

  5. Andersen P., Holmqvist B., Voorhoeve P. E. (1966) Entorhinal activation of dentate granule cells. Acta Physiol. Scand. 66(4):448–460

    Article  PubMed  CAS  Google Scholar 

  6. Berger T. W., Bassett J. L. (1992) System properties of the hippocampus. In: I. Gormezano, E. A. Wasserman (ed) Learning and Memory: The Biological Substrates. Hillsdale, NJ, Lawrence Erlbaum Associates, pp. 275–320

    Google Scholar 

  7. Berger, T. W., M. Baudry, R. D. Brinton, et al. Brain-implantable biomimetic electronics as the next era in neural prosthetics. Proc. IEEE 89(7):993–1012, 2001.

    Article  CAS  Google Scholar 

  8. Berger T. W., Eriksson J., Ciarolla D., Sclabassi R. (1988) Nonlinear systems analysis of the hippocampal perforant path-dentate projection. III. Comparison of random train and paired impulse stimulation. J. Neurophysiol. 60(3):1095–1109

    PubMed  CAS  Google Scholar 

  9. Berger T. W., Eriksson J., Ciarolla D., Sclabassi R. (1988) Nonlinear systems analysis of the hippocampal perforant path-dentate projection. II. Effects of random impulse train stimulation. J. Neurophysiol. 60(3):1076–1094

    PubMed  CAS  Google Scholar 

  10. Berger T. W., Harty T. P., Barrionuevo G., Sclabassi R. J. (1989) Modeling of neuronal networks through experimental decomposition. In: Marmarelis VZ (ed) Advanced Methods of Physiological System Modeling, Vol II. New York, Plenum, pp. 113–128

    Google Scholar 

  11. Berger T. W., Harty T. P., Choi C., Xie X., Barrionuevo G., Sclabassi R. J. (1994) Experimental basis for an input/output model of the hippocampus. In: Marmarelis VZ (ed) Advanced Methods of Physiological System Modeling, Vol III. New York, Plenum, pp. 29–53

    Google Scholar 

  12. Brucato F. H., Mott D. D., Lewis D. V., Swartzwelder H. S. (1995) Gabab receptors modulate synaptically-evoked responses in the rat dentate gyrus, in vivo. Brain Res. 677(2):326–332

    Article  PubMed  CAS  Google Scholar 

  13. Burdette L. J., Gilbert M. E. (1995) Stimulus parameters affecting paired-pulse depression of dentate granule cell field potentials. I. Stimulus intensity. Brain Res. 680(1–2):53–62

    Article  PubMed  CAS  Google Scholar 

  14. Casti, J. L. Nonlinear System Theory. New York: Academic Press, 1985.

  15. Chon K. H., Mullen T. J., Cohen R. J. (1996) A dual-input nonlinear system analysis of autonomic modulation of heart rate. IEEE Trans. Biomed. Eng. 43(5):530–544

    Article  PubMed  CAS  Google Scholar 

  16. Colino A., Malenka R. (1993) Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro. J. Neurophysiol. 69(4):1150–1159

    PubMed  CAS  Google Scholar 

  17. Courellis S. H., V. Marmarelis, and T. Berger. Modeling event-driven nonlinear dynamics. In: Annual Conference Biomedical Engineering Society, Seattle, WA, 2000

  18. Craig A. D., Tapper D. N. (1985) A dorsal spinal neural network in cat. III. Dynamic nonlinear analysis of responses to random stimulation of single type 1 cutaneous input fibers. J. Neurophysiol. 53(4):995–1015

    PubMed  CAS  Google Scholar 

  19. Creager R., Dunwiddie T., Lynch G. (1980) Paired-pulse and frequency facilitation in the ca1 region of the in vitro rat hippocampus. J. Physiol. 299:409–424

    PubMed  CAS  Google Scholar 

  20. Dahl D., Burgard E. C., Sarvey J. M. (1990) Nmda receptor antagonists reduce medial, but not lateral, perforant path-evoked epsps in dentate gyrus of rat hippocampal slice. Exp. Brain Res. 83(1):172–177

    Article  PubMed  CAS  Google Scholar 

  21. Dimoka A., S. H. Courellis, G. I. Gholmieh, V. Z. Marmarelis, and T. W. Berger. Modeling the nonlinear properties of the in vitro hippocampal perforant path-dentate system using multielectrode array technology. IEEE Trans. Biomed. Eng. 55(2):693–702, 2008

    Article  PubMed  Google Scholar 

  22. Doyere V., Srebro B., Laroche S. (1997) Heterosynaptic ltd and depotentiation in the medial perforant path of the dentate gyrus in the freely moving rat. J. Neurophysiol. 77(2):571–578

    PubMed  CAS  Google Scholar 

  23. Eccles J. N. R., Oshima T., Rubia F. J. (1977) The anionic permeability of the inhibitory postsynaptic membrane of hippocampal pyramidal cells. Proc. R. Soc. Lond. B Biol. Sci. 198(1133):345–361

    Article  PubMed  CAS  Google Scholar 

  24. Eichenbaum H. (1999) The hippocampus and mechanisms of declarative memory. Behav. Brain Res. 103(2):123–133

    Article  PubMed  CAS  Google Scholar 

  25. Gholmieh G., Courellis S. H., Dimoka A. et al. (2004) An algorithm for real-time extraction of population epsp and population spike amplitudes from hippocampal field potential recordings. J. Neurosci. Methods 136(2):111–121

    Article  PubMed  Google Scholar 

  26. Gholmieh G., Courellis S. H., Marmarelis V. Z., Berger T. W. (2002) An efficient method for studying short-term plasticity with random impulse train stimuli. J. Neurosci. Methods 121(2):111–127

    Article  PubMed  Google Scholar 

  27. Gholmieh G., Soussou W., Han M. et al. (2006) Custom-designed, high-density conformal planar multielectrode arrays for brain slice electrophysiology. J. Neurosci. Methods 152:116–129

    Article  PubMed  Google Scholar 

  28. Harris E. W., Cotman C. W. (1985) Effects of synaptic antagonists on perforant path paired-pulse plasticity—differentiation of presynaptic and postsynaptic antagonism. Brain Res. 334(2):348–353

    Article  PubMed  CAS  Google Scholar 

  29. Harrison N. L., Lange G. D., Barker J. L. (1988) Pre- and post-synaptic aspects of gaba-mediated synaptic inhibition in cultured rat hippocampal neurons. Adv. Biochem. Psychopharmacol. 45:73–85

    PubMed  CAS  Google Scholar 

  30. Hjorth-Simonsen A. (1972) Projection of the lateral part of the entorhinal area to the hippocampus and fascia dentata. J. Comp. Neurol. 146(2):219–232

    Article  PubMed  CAS  Google Scholar 

  31. Hjorth-Simonsen A., Jeune B. (1972) Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J. Comp. Neurol. 144(2):215–232

    Article  PubMed  CAS  Google Scholar 

  32. Holmes W. R., Levy W. R. (1990) Insights into associative long-term potentiation from computational models of nmda receptor-mediated calcium influx and intracellular calcium concentration changes. J. Neurophysiol. 63:1148–1168

    PubMed  CAS  Google Scholar 

  33. Kahle J. S., Cotman C. W. (1989) Carbachol depresses synaptic responses in the medial but not the lateral perforant path. Brain Res. 482(1):159–163

    Article  PubMed  CAS  Google Scholar 

  34. Kerr D. S., Abraham W. C. (1993) Comparison of associative and non-associative conditioning procedures in the induction of ltd in of the hippocampus. Synapse 14(4):305–313

    Article  PubMed  CAS  Google Scholar 

  35. Kitano K., Aoyagi T., Fukai T. (2001) A possible functional organization of the corticostriatal input within the weakly-correlated striatal activity: a modeling study. Neurosci. Res. 40(1):87–96

    Article  PubMed  CAS  Google Scholar 

  36. Koerner J. F., Cotman C. W. (1981) Micromolar l-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res. 216(1):192–198

    Article  PubMed  CAS  Google Scholar 

  37. Lomo T. (1971) Patterns of activation in a monosynaptic cortical pathway: the perforant path input to the dentate area of the hippocampal formation. Exp. Brain Res. 12(1):18–45

    PubMed  CAS  Google Scholar 

  38. Lynch, G. Synapses, Circuits and the Beginnings of Memory. Cambridge, MA: The MIT Press, 1986.

  39. Macek, T. A., D. G. Winder, R. W. Gereau 4th., C. O. Ladd, P. J. Conn. Differential involvement of group ii and group iii mglurs as autoreceptors at lateral and medial perforant path synapses. J. Neurophysiol. 76(6):3798–3806, 1996.

    Google Scholar 

  40. Marmarelis V. Z. (1993) Identification of nonlinear biological systems using laguerre expansions of kernels. Ann. Biomed. Eng. 21(6):573–589

    Article  PubMed  CAS  Google Scholar 

  41. Marmarelis, V. Z. Nonlinear Dynamic Modeling of Physiological Systems, 1 ed. Wiley-IEEE Press; Engineering IPSoB, ed., 2004.

  42. Marmarelis V. Z., Berger T. W. (2005) General methodology for nonlinear modeling of neural systems with poisson point-process inputs. Math. Biosci. 196(1):1–13

    Article  PubMed  CAS  Google Scholar 

  43. Marmarelis P. Z., Marmarelis V. Z. (1978) Analysis of Physiological Systems: The White Noise Approach. New York, Plenum

    Google Scholar 

  44. Materne R., Van Beers B. E., Smith A. M. et al. (2000) Non-invasive quantification of liver perfusion with dynamic computed tomography and a dual-input one-compartmental model. Clin. Sci. (Lond.) 99(6):517–525

    CAS  Google Scholar 

  45. McNaughton B. L. (1980) Evidence for two physiologically distinct perforant pathways to the fascia dentata. Brain Res. 199(1):1–19

    Article  PubMed  CAS  Google Scholar 

  46. Mc Naughton B. L., Barnes C. A. (1977) Physiological identification and analysis of dentate granule cell responses to stimulation of the medial and lateral perforant pathways in the rat. J. Comp. Neurol. 175(4):439–454

    Article  CAS  Google Scholar 

  47. O’Keefe J., Nadel L. (1979) The hippocampus as a cognitive map. Behav. Brain Sci. 2:487–533

    Google Scholar 

  48. Rausche G., Sarvey J. M., Heinemann U. (1989) Slow synaptic inhibition in relation to frequency habituation in dentate granule cells of rat hippocampal slices. Exp. Brain Res. 78(2):233–242

    Article  PubMed  CAS  Google Scholar 

  49. Sclabassi R. J., Eriksson J. L., Port R. L., Robinson G. B., Berger T. W. (1988) Nonlinear systems analysis of the hippocampal perforant path-dentate projection. I. Theoretical and interpretational considerations. J. Neurophysiol. 60(3):1066–1076

    PubMed  CAS  Google Scholar 

  50. Sclabassi, R., and G. Noreen. The characterization of dual-input evoked potentials as nonlinear systems using random impulse trains. Proc. Pittsburgh Model. Simul. Conf. 12:1123–1130, 1981.

    Google Scholar 

  51. Skaggs W. E., McNaughton B. L., Wilson M. A., Barnes C. A. (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6(2):149–172

    Article  PubMed  CAS  Google Scholar 

  52. Steffensen S. C., Henriksen S. J. (1991) Effects of baclofen and bicuculline on inhibition in the fascia dentata and hippocampus regio superior. Brain Res. 538(1):46–53

    Article  PubMed  CAS  Google Scholar 

  53. Steward O. (1976) Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J. Comp. Neurol. 167(3):285–314

    Article  PubMed  CAS  Google Scholar 

  54. Thalmann R. H., Ayala G. F. (1982) A late increase in potassium conductance follows synaptic stimulation of granule neurons of the dentate gyrus. Neurosci. Lett. 29(3):243–248

    Article  PubMed  CAS  Google Scholar 

  55. Traub R. D., Knowles W. D., Miles R., Wong R. K. (1987) Models of the cellular mechanism underlying propagation of epileptiform activity in the ca2–ca3 region of the hippocampal slice. Neuroscience 21(2):457–470

    Article  PubMed  CAS  Google Scholar 

  56. Uva L., de Curtis M. (2005) Polysynaptic olfactory pathway to the ipsi- and contralateral entorhinal cortex mediated via the hippocampus. Neurosci. Lett. 130(1):249–258

    CAS  Google Scholar 

  57. Vinogradova, O. S. Functional Organization of the Limbic System in the Process of Registration of Information: Facts and Hypotheses, Vol. 2. New York: Plenum; Pribram RLIaKH, ed. The hippocampus, 1975.

  58. Wang H., Wagner J. J. (1999) Priming-induced shift in synaptic plasticity in the rat hippocampus. J. Neurophysiol. 82(4):2024–2028

    PubMed  CAS  Google Scholar 

  59. White G., Levy W. B., Steward O. (1990) Spatial overlap between populations of synapses determines the extent of their associative interaction during the induction of long-term potentiation and depression. J. Neurophysiol. 64(4):1186–1198

    PubMed  CAS  Google Scholar 

  60. Wilson M., Bowel J. M. (1992) Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J. Neurophysiol. 67:981–995

    PubMed  CAS  Google Scholar 

  61. Wilson R. C., Steward O. (1978) Polysynaptic activation of the dentate gyrus of the hippocampal formation: an olfactory input via the lateral entorhinal cortex. Exp. Brain Res. 33(3–4):523–534

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH Grant No. P41 EB001978 to the USC Biomedical Simulations Resource and NSF Grant No. EEC-0310723 to the USC Engineering Research Center on Biomimetic MicroElectronics Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Dimoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimoka, A., Courellis, S.H., Marmarelis, V.Z. et al. Modeling the Nonlinear Dynamic Interactions of Afferent Pathways in the Dentate Gyrus of the Hippocampus. Ann Biomed Eng 36, 852–864 (2008). https://doi.org/10.1007/s10439-008-9463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9463-6

Keyterms

Navigation