Skip to main content

Advertisement

Log in

The Effect of Mechanical Loading on the Metabolism of Growth Plate Chondrocytes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

It is well known that mechanical loading influences the endochondral bone formation essential for the growth and development of longitudinal bones. The question was, however, asked whether the effect of mechanical loading on the chondrocyte metabolism is dependent on the loading frequency. This study was aimed at evaluating the effect of tensile loadings with various frequencies on the proliferation of growth plate chondrocytes and extracellular matrix synthesis. The chondrocytes obtained from rib growth plate cartilage of 4-week-old male Wistar strain rats were cultured by day 4 and day 11 and used as proliferating and matrix-forming chondrocytes, respectively. Intermittent tensile stresses with different frequencies were applied to each stage chondrocyte. DNA syntheses were examined by measuring the incorporation of [3H]thymidine into the cells. Furthermore, the rates of collagen and proteoglycan syntheses were determined by measuring the incorporation of [2,3-3H]proline and [35S]sulfate into the cells, respectively. At the proliferating stage, intermittent tensions with the frequencies of 30 cycles/min and 150 cycles/min significantly (p < 0.05) upregulated the syntheses of DNA, which indicates the promotion of chondrocyte proliferation. At the matrix-forming stage, collagen, and proteoglycan syntheses also enhanced with increase of the loading frequency. In particular, the intermittent tension with the frequencies of 30 cycles/min and 150 cycles/min increased significantly (p < 0.05 or p < 0.01) both the collagen and proteoglycan syntheses. These results suggest that the proliferation and differentiation of growth plate chondrocytes are regulated by the mechanical loading and that the chondrocyte metabolism enhanced with increase of loading frequency. These may give more insight into the possible mechanism leading to endochondral bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4

Similar content being viewed by others

References

  1. Bitgood M. J., A. P. McMahon (1995) Hedgehog and Bmp genes are coexpressed at many diverse sites of cell–cell interaction in the mouse embryo. Dev. Biol. 172, 126–138

    Article  PubMed  CAS  Google Scholar 

  2. Bourrin S., C. Genty, S. Palle, C. Gharib, C. Alexandre (1994) Adverse effects of strenuous exercise: a densitometric and histomorphometric study in the rat. J. Appl. Physiol. 76, 1999–2005

    PubMed  CAS  Google Scholar 

  3. Brown T. D., M. Bottlang, D. R. Pedersen, A. J. Banes (2000) Development and experimental validation of a fluid/structure-interaction finite element model of a vacuum-driven cell culture mechanostimulus system. Comput. Method Biomech. Biomed. Eng. 3, 65–78

    Article  Google Scholar 

  4. Carter D. R., G. S. Beaupre (2001) Skeletal function and form: mechanobiology of skeletal development, aging, and regeneration. Combridge, UK: Cambridge University Press

    Google Scholar 

  5. Carter D. R., M. Wong (1988) The role of mechanical loading histories in the development of diarthrodial joints. J. Orthop. Res. 6, 804–816

    Article  PubMed  CAS  Google Scholar 

  6. Chan D., O. Jacenko (1998) Phenotypic and biochemical consequences of collagen X mutations in mice and humans. Matrix Biol. 17, 160–184

    Article  Google Scholar 

  7. Choquet D., D. P. Felsenfeld, M. P. Sheetz (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48

    Article  PubMed  CAS  Google Scholar 

  8. Dai J., A. B. Rabie (2007) VEGF: an essential mediator of both angiogenesis and endochondral ossification. J. Dent. Res. 86, 937–950

    PubMed  CAS  Google Scholar 

  9. Dascalu A., R. Korenstein, Y. Oron, Z. Nevo (1996) A hyperosmotic stimulus regulates intracellular pH, calcium, and S-100 protein levels in avian chondrocytes. Biochem. Biophys. Res. Commun. 227, 368–373

    Article  PubMed  CAS  Google Scholar 

  10. Dascalu A., Y. Oron, Z. Nevo, R. Korenstein (1995) Hyperosmotic modulation of the cytosolic calcium concentration in a rat osteoblast-like cell line. J. Physiol. 486, 97–104

    PubMed  CAS  Google Scholar 

  11. DeChiara T. M., E. J. Robertson, A. Efstratiadis (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859

    Article  PubMed  CAS  Google Scholar 

  12. De Troyer A. (1997) Role of joint receptors in modulation of inspiratory intercostals activity by rib motion in dogs. J. Physiol. 503, 445–453

    Article  PubMed  Google Scholar 

  13. Edlich M., C. E. Yellowley, C. R. Jacobs, H. J. Donahue (2001) Oscillating fluid flow regulates cytosolic calcium concentration in bovine articular chondrocytes. J. Biomech. 34, 59–65

    Article  PubMed  CAS  Google Scholar 

  14. Egeblad M., H. C. Shen, D. J. Behonick, L. Wilmes, A. Eichten, L. V. Korets, F. Kheradmand, Z. Werb, L. M. Coussens (2007) Type I collagen is a genetic modifier of matrix metalloproteinase 2 in murine skeletal development. Dev. Dyn. 236, 1683–1693

    Article  PubMed  CAS  Google Scholar 

  15. Elder S. H., S. A. Goldstein, J. H. Kimura, L. J. Soslowsky, D. M. Spengler (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann. Biomed. Eng. 29, 476–482

    Article  PubMed  CAS  Google Scholar 

  16. Fukuda K., S. Asada, F. Kumano, M. Saitoh, K. Otani, S. Tanaka (1997) Cyclic tensile stretch on bovine articular chondrocytes inhibits protein kinase C activity. J. Lab. Clin. Med. 130, 209–215

    Article  PubMed  CAS  Google Scholar 

  17. Gillespie P. G., R. G. Walker (2001) Molecular basis of mechanosensory transduction. Nature 413, 194–202

    Article  PubMed  CAS  Google Scholar 

  18. Gray M. L., A. M. Pizzanelli, A. J. Grodzinsky, R. C. Lee (1988) Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6, 777–792

    Article  PubMed  CAS  Google Scholar 

  19. Guilak F. (1995) Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28, 1529–1541

    Article  PubMed  CAS  Google Scholar 

  20. Guilak F., B. C. Meyer, A. Ratcliffe, V. C. Mow (1994) The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthr. Cart. 2, 91–101

    Article  CAS  Google Scholar 

  21. Guilak F., A. Ratcliffe, V. C. Mow (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J. Orthop. Res. 13, 410–421

    Article  PubMed  CAS  Google Scholar 

  22. Hall A. C. (1995) Volume-sensitive taurine transport in bovine articular chondrocytes. J. Physiol. 484, 755–766

    PubMed  CAS  Google Scholar 

  23. Hall A. C., E. R. Horwitz, R. J. Wilkins (1996) The cellular physiology of articular cartilage. Exp. Physiol. 81, 535–545

    PubMed  CAS  Google Scholar 

  24. Hamill O. P., B. Martinac (2001) Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740

    PubMed  CAS  Google Scholar 

  25. Honda K., S. Ohno, K. Tanimoto, C. Ijuin, N. Tanaka, T. Doi, Y. Kato, K. Tanne (2000) The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur. J. Cell Biol. 79, 601–609

    Article  PubMed  CAS  Google Scholar 

  26. Inada M., Y. Wang, M. H. Byrne, M. U. Rahman, C. Miyaura, C. López-Otín, S. M. Krane (2004) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc. Natl. Acad. Sci. USA 101, 17192–17197

    Article  PubMed  CAS  Google Scholar 

  27. Kim Y. J., R. L. Sah, A. J. Grodzinsky, A. H. Plaas, J. D. Sandy (1994) Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Archs. Biochem. Biophys. 311, 1–12

    Article  CAS  Google Scholar 

  28. Kluppel M., T. N. Wight, C. Chan, A. Hinek, J. L. Wrana (2005) Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Development 132, 3989–4003

    Article  PubMed  CAS  Google Scholar 

  29. Kronenberg H. M. (2006) PTHrP and skeletal development. Ann. NY Acad. Sci. 1068, 1–13

    Article  PubMed  CAS  Google Scholar 

  30. Lang F., G. L. Busch, H. Volkl (1998) The diversity of volume regulatory mechanisms. Cell Physiol. Biochem. 8, 1–45

    Article  PubMed  CAS  Google Scholar 

  31. Li C., Y. Hu, G. Sturm, G. Wick, Q. Xu (2000) Ras/Rac-Dependent activation of p38 mitogen-activated protein kinases in smooth muscle cells stimulated by cyclic strain stress. Arterioscler. Thromb. Vasc. Biol. 20, E1–9

    PubMed  CAS  Google Scholar 

  32. Li K. C., R. F. Zernicke, R. J. Barnard, A. F. Li (1991) Differential response of rat limb bones to strenuous exercise. J. Appl. Physiol. 70, 554–560

    Article  PubMed  CAS  Google Scholar 

  33. Ma Y. H., S. Ling, H. E. Ives (1999) Mechanical strain increases PDGF-B and PDGF beta receptor expression in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 265, 606–610

    Article  PubMed  CAS  Google Scholar 

  34. Mao J. J., H. D. Nah (2004) Growth and development: hereditary and mechanical modulations. Am. J. Orthod. Dentofacial Orthop. 125, 676–689

    Article  PubMed  Google Scholar 

  35. Marchenko S. M., S. O. Sage (2000) Hyperosmotic but not hyposmotic stress evokes a rise in cytosolic Ca2+ concentration in endothelium of intact rat aorta. Exp. Physiol. 85, 151–157

    Article  PubMed  CAS  Google Scholar 

  36. McCarty N. A., R. G. O’Neil (1992) Calcium signaling in cell volume regulation. Physiol. Rev. 72, 1037–1061

    PubMed  CAS  Google Scholar 

  37. Minina E., C. Kreschel, M. C. Naski, D. M. Ornitz, A. Vortkamp (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev. Cell 3, 439–449

    Article  PubMed  CAS  Google Scholar 

  38. Nilsson O., R. Marino, F. De Luca, M. Phillip, J. Baron (2005) Endocrine regulation of the growth plate. Horm. Res. 64, 157–165

    Article  PubMed  CAS  Google Scholar 

  39. O’Neill W. C. (1999) Physiological significance of volume-regulatory transporters. Am. J. Physiol. 276, 995–1011

    Google Scholar 

  40. Ohashi N., A. G. Robling, D. B. Burrr, C. H. Turner (2002) The effects of dynamic axial loading on the rat growth plate. J. Bone Miner. Res. 17, 284–292

    Article  PubMed  Google Scholar 

  41. Ohno S., N. Tanaka, M. Ueki, K. Honda, K. Tanimoto, K. Yoneno, M. Ohno-Nakahara, K. Fujimoto, Y. Kato, K. Tanne (2005) Mechanical regulation of terminal chondrocyte differentiation via RGD-CAP/beta ig-h3 induced by TGF-beta. Connect. Tiss. Res. 46, 223–234

    Article  CAS  Google Scholar 

  42. Pufe T., A. Lemke, B. Kurz, W. Peterson, B. Tillmann, A. J. Grodzinsky., R. Mentlein (2004) Mechanical overload induces VEGF in cartilage discs via hypoxia-inducible factor. Am. J. Pathol. 164, 185–192

    PubMed  CAS  Google Scholar 

  43. Ragan P. M., A. M. Badger, M. Cook, V. I. Chin, M. Gowen, A. J. Grodzinsky, M. W. Lark (1999) Down-regulation of chondrocyte aggrecan and type-II collagen gene expression correlates with increases in static compression magnitude and duration. J. Orthop. Res. 17, 836–842

    Article  PubMed  CAS  Google Scholar 

  44. Robling A. G., K. M. Duijvelaar, J. V. Geevers, N. Ohashi, C. H. Turner (2001) Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone 29, 105–113

    Article  PubMed  CAS  Google Scholar 

  45. Sah R. L., Y. J. Kim, J. Y. Dong, A. J. Grodzinsky, A. H. Plaas, J. D. Sandy (1989) Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619–636

    Article  PubMed  CAS  Google Scholar 

  46. Schild C., B. Trueb (2002) Mechanical stress is required for high-level expression of connective tissue growth factor. Exp. Cell Res. 274, 83–91

    Article  PubMed  CAS  Google Scholar 

  47. Seko Y., N. Takahashi, M. Shibuya, Y. Yazaki (1999) Pulsatile stretch stimulates vascular endothelial growth factor (VEGF) secretion by cultured rat cardiac myocytes. Biochem. Biophys. Res. Commun. 254, 462–465

    Article  PubMed  CAS  Google Scholar 

  48. Shimomura Y., T. Yoneda, F. Suzuki (1975) Osteogenesis by chondrocytes from growth cartilage of rat rib. Calcif. Tiss. Res. 19, 179–187

    Article  CAS  Google Scholar 

  49. Sibonga J. D., M. Zhang, G. L. Evans, K. C. Westerlind, J. M. Cavolina, E. Morey-Holton, R. T. Turner (2000) Effects of spaceflight and simulated weightlessness on longitudinal bone growth. Bone 27, 535–540

    Article  PubMed  CAS  Google Scholar 

  50. Smith J. D., N. Davies, A. I. Willis, B. E. Sumpio, P. Zilla (2001) Cyclic stretch induces the expression of vascular growth factor in vascular smooth muscle cells. Endothelium 8, 41–48

    PubMed  CAS  Google Scholar 

  51. Stickens D., D. J. Behonick, N. Ortega, B. Heyer, B. Hartenstein, Y. Yu, A. J. Fosang, M. Schorpp-Kistner, P. Angel, Z. Werb (2004) Altered endochondral bone develop-ment in matrix metalloproteinase 13-deficient mice. Development 131, 5883–5895

    Article  PubMed  CAS  Google Scholar 

  52. Tanaka N., S. Ohno, K. Honda, K. Tanimoto, T. Doi, M. Ohno-Nakahara, E. Tafolla, S. Kapila, K. Tanne (2005) Cyclic mechanical strain regulates the PTHrP expression in cultured chondrocytes via activation of the Ca2+ channel. J. Dent. Res. 84, 64–68

    Article  PubMed  CAS  Google Scholar 

  53. Teramoto M., S. Kaneko, S. Shibata, M. Yanagishita, K. Soma (2003) Effect of compressive forces on extracellular matrix in rat mandibular condylar cartilage. J. Bone Miner. Metab. 21, 276–286

    Article  PubMed  Google Scholar 

  54. Uchida A., K. Yamashita, K. Hashimoto, Y. Shimomura (1988) The effect of mechanical stress on cultured growth cartilage cells. Connect. Tiss. Res. 17, 305–311

    Article  CAS  Google Scholar 

  55. Umemura, Y., T. Ishiko, H. Tsujimoto, H. Miura, N. Mokoshi, H. Suzuki (1995) Effect of jump training on bone hypertrophy in young and old rats. Int. J. Sports Med. 16, 364–367

    Article  PubMed  CAS  Google Scholar 

  56. van Kampen, G. P., J. P. Veldhuijzen, R. Kuijer, R. J. van de Stadt, and C. A. Schipper. Cartilage response to mechanical force in high-density chondrocyte cultures. Arthritis Rheum. 28:419–424, 1985

    Google Scholar 

  57. Vande Geest, J. P., E. S. Di Martino, and D. A. Vorp. An analysis of the complete strain field within Flexercell membranes. J. Biomech. 37:1923–1928, 2004

  58. Van der Eerden, B. C., M. Karperien, and J. M. Wit. Systemic and local regulation of the growth plate. Endocr. Rev. 24:782–801, 2003

    Google Scholar 

  59. Wang N., J. P. Butler, D. E. Ingber (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127

    Article  PubMed  CAS  Google Scholar 

  60. Wang X., J. J. Mao (2002) Accelerated chondrogenesis of the rabbit cranial base growth plate by oscillatory mechanical stimuli. J. Bone Miner. Res. 17, 1843–1850

    Article  PubMed  CAS  Google Scholar 

  61. Wong M., D. R. Carter (2003) Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33, 1–13

    Article  PubMed  CAS  Google Scholar 

  62. Wong M., M. Siegrist, X. Cao (1999) Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol. 18, 391–399

    Article  PubMed  CAS  Google Scholar 

  63. Wong M., M. Siegrist, K. Goodwin (2003) Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 33, 685–693

    Article  PubMed  CAS  Google Scholar 

  64. Yellowley C. E., C. R. Jacobs, H. J. Donahue (1999) Mechanisms contributing to fluid-flow-induced Ca2+ mobilization in articular chondrocytes. J. Cell Physiol. 180, 402–408

    Article  PubMed  CAS  Google Scholar 

  65. Yoshida E., M. Noshiro, T. Kawamoto, S. Tsutsumi, Y. Kuruta, Y. Kato (2001) Direct inhibition of Indian hedgehog expression by parathyroid hormone (PTH)/PTH-related peptide and up-regulation by retinoic acid in growth plate chondrocyte cultures. Exp. Cell Res. 265, 64–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-aid (#1157166, #1347045100, #15791209, #15390636, and #15592165) for Scientific Research from the Ministry of Education, Science, Sports, and Culture in Japan. This work was also carried out by the courtesy of the Research Center for Molecular Medicine, Hiroshima University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueki, M., Tanaka, N., Tanimoto, K. et al. The Effect of Mechanical Loading on the Metabolism of Growth Plate Chondrocytes. Ann Biomed Eng 36, 793–800 (2008). https://doi.org/10.1007/s10439-008-9462-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9462-7

Keywords

Navigation