Skip to main content
Log in

Experimental and Systems Biology Studies of the Molecular Basis for the Radioresistance of Prostate Carcinoma Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Molecular mechanisms for the gamma-ionizing radiation (IR) resistance of human prostate cancer cells, PC-3, are not quite clear. Since the low-LET-IR effects are primarily manifested by the generation of reactive oxygen species (ROS), the IR-induced expressions both of ROS-metabolizing antioxidant enzymes, such as Mn- and CuZn superoxide dismutases (SODs) and catalase (Cat), and of the transcriptional nuclear factor-kappaB (NF-κB) were explored. A substantial increase in the concentrations of SODs was observed in the cells irradiated by 10 and 20 Gy relative to those irradiated by 0 and 2 Gy, while the Cat and NF-κB expressions were found to be fairly stable. A system biology model was developed to shed more light on how MnSOD affects the biological state of cells depending upon the production of H2O2. By raising the initial presence of MnSOD in the 0.7–10 μM concentration range, the time-dependent concentrations of H2O2 for various initial levels of MnSOD were contrasted. The radioresistance of PC-3 cells is suggested to be associated with the positive, feed-forward vicious circle established between the H2O2-mediated elevation of MnSOD expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4

Similar content being viewed by others

References

  1. Barnouin K., Dubuisson M. L., Child E. S., Fernandez de Mattos S., Glassford J., Medema R. H, Mann D. J., Lam E. W. H2O2 induces a transient multi-phase cell cycle arrest in mouse fibroblasts through modulating cyclin D and p21Cip1 expression. J. Biol. Chem. 277:13761–13770, 2002

    Article  PubMed  CAS  Google Scholar 

  2. Bataller M., Portugal J. Apoptosis and cell recovery in response to oxidative stress in p53-deficient prostate carcinoma cells. Arch. Biochem. Biophys. 437:151–158, 2005

    Article  PubMed  CAS  Google Scholar 

  3. Bernard D., D. Monte, B. Vandenbunder, C. Abbadie. The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD. Oncogene 21: 4392–4402, 2002

    Article  PubMed  CAS  Google Scholar 

  4. Buettner G. R., F. N. Chin, M. Wang, V. G. J. Rodgers, F. Q. Schafer. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic. Biol. Med. 41:1338–1350, 2006

    Article  PubMed  CAS  Google Scholar 

  5. Bunz F., Dutriaux A., Lengauer C., Waldman T., Zhou S., Brown J. P., Sedivy J. M., Kinzler K. W., Vogelstein B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1500, 1998

    Article  PubMed  CAS  Google Scholar 

  6. Chen Q. M., Liu J., Merrett J. B. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human. Biochem. J. 347:543–551, 2000

    Article  PubMed  CAS  Google Scholar 

  7. Dandrea T., Hellmold H., Jonsson C., Zhivotovsky B., Hofer T., Warngard L., Cotgreave I. The transcriptosomal response of human A549 lung cells to a hydrogen peroxide-generating system: relationship to DNA damage, cell cycle arrest, and caspase activation. Free Radic. Biol. Med. 36:881–896, 2004

    Article  PubMed  CAS  Google Scholar 

  8. Das K. C., Lewis-Molock Y., White C. W. Activation of NF-kappaB and elevation of MnSOD gene expression by thiol reducing agents in lung adenocarcinoma (A549) cells. Am. J. Physiol. 269:L588–602, 1995

    PubMed  CAS  Google Scholar 

  9. Fersht, A. Enzyme Structure and Mechanism. NewYork: W. H. Freeman and Company, 1985, 475 pp

  10. Fornace A. J. Jr., Amundson S. A., Bittner M., Myers T. G., Meltzer P., Weinsten J. N., Trent J. The complexity of radiation stress responses: analysis by informatics and functional genomics approaches. Gene Expr. 7:387–400, 1999

    PubMed  CAS  Google Scholar 

  11. Gajewska J., Szczypka M., Izbicki T., Klepacka T., Laskowska-Klita T. Antioxidant and glutathione-associated enzymes in Wilms’ tumour after chemotherapy. J. Cancer Res. Clin. Oncol. 122:483–488, 1996

    Article  PubMed  CAS  Google Scholar 

  12. Guo G., Yan-Sanders Y., Lyn-Cook B. D., Wang T., Tamae D., Ogi J., Khaletskiy A., Li Z., Weydert C., Longmate J. A., Huang T. T., Spitz D. R., Oberley L. W., Li J. J. Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Mol. Cell Biol. 23:2362–2378, 2003

    Article  PubMed  CAS  Google Scholar 

  13. Hoffmann A., A. Levchenko, M. L. Scott, D. Baltimore. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298:1241–1245, 2002

    Article  PubMed  CAS  Google Scholar 

  14. Huang T. T., Yasunami M., Carlson E. J., Gillespie A. M., Reaume A. G., Hoffman E. K., Chan P. H., Scott R. W., Epstein C. J. Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. Arch. Biochem. Biophys. 344:424–432, 1997

    Article  PubMed  CAS  Google Scholar 

  15. Ihekwaba A. E. C., D. S. Broomhead, R. L. Grimley, N. Benson, D. B. Kell. Sensitivity analysis of parameters controlling oscillatory signaling in the NF-κB pathway: the roles of IKK and IκBα. Syst. Biol. 1:93–103, 2004

    Article  CAS  Google Scholar 

  16. Isaacs W. B., Carter B. S., Ewing C. M. Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res. 51:4716–4720, 1991

    PubMed  CAS  Google Scholar 

  17. Jemal A., Thomas A., Murray T., Thun M. Cancer statistics, 2002. CA Cancer J. Clin. 52:23–47, 2002

    Article  PubMed  Google Scholar 

  18. Joiner M. C., Marples B., Forman J. D., Sarkar F. H. Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model. Mol. Cancer Ther. 3:1271–1279, 2004

    PubMed  Google Scholar 

  19. Jung K., Seidel B., Rudolph B., Lein M., Cronauer M. V., Henke W., Hampel G., Schnorr D., Loening S. A. Antioxidant enzymes in malignant prostate cell lines and in primary cultured prostatic cells. Free Radic. Biol. Med. 23:127–133, 1997

    Article  PubMed  CAS  Google Scholar 

  20. Kaplan I. D., Cox R. S., Bagshaw M. A. Prostate specific antigen after external beam radiotherapy for prostatic cancer: followup. J. Urol. 149:519–522, 1993

    PubMed  CAS  Google Scholar 

  21. Kim H. T., Kim Y. H., Nam J. W., Lee H. J., Rho H. M., Jung G. Study of 5′-flanking region of human Cu/Zn superoxide dismutase. Biochem. Biophys. Res. Commun. 201:1526–1533, 1994

    Article  PubMed  CAS  Google Scholar 

  22. Li S., Yan T., Yang J. Q., Oberley T. D., Oberley L. W. The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res. 60:3927–3939, 2000

    PubMed  CAS  Google Scholar 

  23. Lim S. D., Sun C., Lambeth J. D., Marshall F., Amin M., Chung L., Petros J. A., Arnold R. S. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 62:200–207, 2005

    Article  PubMed  CAS  Google Scholar 

  24. Lin A., Karin M. NF-kappaB in cancer: a marked target. Semin. Cancer. Biol. 13:107–114, 2003

    Article  PubMed  CAS  Google Scholar 

  25. Manna S. K., Zhang H. J., Yan T., Oberley L. W., Aggarwal B. B. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-B and activated protein-1. J. Biol. Chem. 273:13245–13254, 1998

    Article  PubMed  CAS  Google Scholar 

  26. Mendes P., Kell D. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14:869–883, 1998

    Article  PubMed  CAS  Google Scholar 

  27. Mitrasinovic P. M., O. Mitrasinovic. On possible mechanisms for reactive oxygen species (ROS)-mediated cross-talk between NF-κB and JNK: a systems biology view. GESTS Intl. Trans Comput. Sci. Eng. 27:41–52, 2006

    Google Scholar 

  28. Mitrasinovic, P. M. Systems biology studies of reactive oxygen species (ROS)-mediated apoptosis. In: Proceedings of the 8th International Conference on Fundamental and Applied Aspects of Physical Chemistry, vol. 1, 2006, pp. 279–281

  29. Niciforovic, A., M. Adzic, M. B. Radojcic, and M. Spasic, Cytotoxicity of natural anthraquinone (Aloin) in HeLaS3 cells are accompanied by altered activity of antioxidant enzymes. Cancer Biol. Ther. 6:1200–1205, 2007

    PubMed  CAS  Google Scholar 

  30. Niciforovic, A., M. Adzic, B. Zaric, and M. B. Radojcic. Adjuvant antiproliferative and cytotoxic effect of aloin in irradiated HeLaS3 cells. Russ. J. Phys. Chem. 8:1463–1466, 2007

    Article  CAS  Google Scholar 

  31. Oberley T. D., Zhong W., Szweda L. I., Oberley L. W. Localization of antioxidant enzymes and oxidative damage products in normal and malignant prostate epithelium. Prostate 44:144–155, 2000

    Article  PubMed  CAS  Google Scholar 

  32. Pajonk F., Pajonk K., McBride W. H. Inhibition of NF-kappaB, clonogenicity, and radiosensitivity of human cancer cells. J. Natl. Cancer Inst. 91:1956–1960, 1999

    Article  PubMed  CAS  Google Scholar 

  33. Pawlik T. M., Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59:928–942, 2004

    Article  PubMed  Google Scholar 

  34. Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature 389: 300–305, 1997

    Article  PubMed  CAS  Google Scholar 

  35. Raffoul, J. J., Y. Wang , O. Kucuk , J. D. Forman , F. H. Sarkar, and G. G. Hillman. Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer 6:107, 2006

    Google Scholar 

  36. Rhee, S., Y. Bae, S.-R. Lee, and J. Kwon. Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE 53:PE1, 2000

    Google Scholar 

  37. Roninson I. B. Tumor senescence as a determinant of drug response in vivo. Drug Resist. Updat. 5:204–208, 2002

    Article  PubMed  CAS  Google Scholar 

  38. Schmidt K. N., Amstad P., Cerutti P., Baeuerle P. A. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappa B. Chem. Biol. 2:13–22, 1995

    Article  PubMed  CAS  Google Scholar 

  39. Shukla S., MacLennan G. T., Fu P., Patel J., Marengo S. R., Resnick M. I., Gupta S. Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia 6:390–400, 2004

    Article  PubMed  CAS  Google Scholar 

  40. Sweeney C., Li L., Shanmugam R., Bhat-Nakshatri P., Jayaprakasan V., Baldridge L. A., Gardner T., Smith M., Nakshatri H., Cheng L. Nuclear factor-kappaB is constitutively activated in prostate cancer in vitro and is overexpressed in prostatic intraepithelial neoplasia and adenocarcinoma of the prostate. Clin. Cancer Res. 10:5501–5507, 2004

    Article  PubMed  CAS  Google Scholar 

  41. Vilenchik M. M., A. G. Knudson Jr Inverse radiation dose-rate effects on somatic and germ-line mutations and DNA damage. Proc. Natl Acad. Sci. USA 97:5381–5386, 2000

    Article  PubMed  CAS  Google Scholar 

  42. Vucic V., Isenovic E. R., Adzic M., Ruzdijic S., Radojcic M. B. Effects of gamma-radiation on cell growth, cycle arrest, death, and superoxide dismutase expression by DU 145 human prostate cancer cells. Braz. J. Med. Biol. Res. 39:227–236, 2006

    Article  PubMed  CAS  Google Scholar 

  43. Wang C. Y., Mayo M. W., Baldwin A. S. Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274:784–787, 1996

    Article  PubMed  CAS  Google Scholar 

  44. Xiong Y., Hannon G. J., Zhang H., Casso D., Kobayashi R., Beach D. p21is a universal inhibitor of cyclin kinases. Nature 366:701–704, 1993

    Article  PubMed  CAS  Google Scholar 

  45. Xu Y., Kiningham K. K., Devalaraja M. N., Yeh C. C., Majima H., Kasarskis E. J., St Clair D. K. An intronic NF-kappaB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta. DNA Cell Biol. 18:709–722, 1999

    Article  PubMed  CAS  Google Scholar 

  46. Zagars G. K., Pollack A., Smith L. G. Conventional external-beam radiation therapy alone or with androgen ablation for clinical stage III (T3, NX/N0, M0) adenocarcinoma of the prostate, Int. J. Radiat. Oncol. Biol. Phys. 44:809–819, 1999

    PubMed  CAS  Google Scholar 

  47. Zhou L. Z., Johnson A. P., Rando T. A. NF-kappaB and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic. Biol. Med. 31:1405–416, 2001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Projects 143042B and 143016B (Prof. Petar M. Mitrasinovic, Ph.D.) financed by the Ministry of Science of the Republic of Serbia. The authors gratefully acknowledge the reviewers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petar M. Mitrasinovic or Marija B. Radojcic.

Additional information

Petar M. Mitrasinovic and Marija B. Radojcic equally contributed to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 2209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niciforovic, A., Djordjevic, J., Adzic, M. et al. Experimental and Systems Biology Studies of the Molecular Basis for the Radioresistance of Prostate Carcinoma Cells. Ann Biomed Eng 36, 831–838 (2008). https://doi.org/10.1007/s10439-008-9457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9457-4

Keywords

Navigation