Skip to main content

Advertisement

Log in

Radiation-Guided P-Selectin Antibody Targeted to Lung Cancer

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Purpose: P-selectin expression is significantly increased in tumor microvasculature following exposure to ionizing radiation. The purpose of this study was to image radiation-induced P-selectin expression in vivo using optical imaging and gamma camera imaging in a heterotopic lung cancer model by using ScFv antibodies to P-selectin. Procedures: In vitro studies using endothelial cells were done using 3 Gy radiation and selected ScFv antibodies to P-selectin. In vivo studies were performed using Lewis lung carcinoma cells subcutaneously injected into the hind limbs of nude mice. Mice were treated with 6 Gy radiation and sham radiation 10 days post-inoculation. P-selectin expression was assessed with near-infrared imaging using Cy7 labeled antibody, and gamma camera imaging using 111In-DTPA labeled antibody. Results: In vitro studies showed antibody binding to P-selectin in radiation treated endothelial cells. In vivo optical imaging and gamma camera imaging studies showed significant tumor-specific binding to P-selectin in irradiated tumors compared to unirradiated tumors. Conclusions: Optical imaging and gamma camera imaging are effective methods for visualizing in vivo targeting of radiation-induced P-selectin in lung tumors. This study suggests that fluorescent-labeled and radiolabeled ScFv antibodies can be used to target radiation-induced P-selectin for the tumor-specific delivery of therapeutic drugs and radionuclides in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Barcellos-Hoff M. H., Park C., Wright E. G. (2005) Radiation and the microenvironment—tumorigenesis and therapy. Nat. Rev. Cancer 5, 867–875

    Article  PubMed  CAS  Google Scholar 

  2. Brekke O. H., Sandlie I. (2003) Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov. 2, 52–62

    Article  PubMed  CAS  Google Scholar 

  3. Carter P. (2001) Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1, 118–129

    Article  PubMed  CAS  Google Scholar 

  4. Chen X., Conti P. S., Moats R. A. (2004) In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts. Cancer Res. 64, 8009–8014

    Article  PubMed  CAS  Google Scholar 

  5. Cheng Z., Wu Y., Xiong Z., Gambhir S. S., Chen X. (2005) Near-infrared fluorescent RGD peptides for optical imaging of integrin αvβ3 expression in living mice. Bioconjugate Chem. 16, 1433–1441

    Article  CAS  Google Scholar 

  6. Dharmarajan S., Schuster D. P. (2005) Molecular imaging of the lungs. Acad. Radiol. 12, 1394–1405

    Article  PubMed  Google Scholar 

  7. Dole V. S., Bergmeier W., Mitchell H. A., Eichenberger S. C., Wagner D. D. (2005) Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: role of P-selectin. Blood 106(7), 2334–2339

    Article  PubMed  CAS  Google Scholar 

  8. Fang J., Jin H., Song J. (2003) Construction, expression and tumor targeting of a single-chain Fv against human colorectal carcinoma. World J. Gastroenterol. 9(4), 726–730

    PubMed  CAS  Google Scholar 

  9. Geng, L., K. Osusky, S. Konjeti, A. Fu, and D. Hallahan. Radiation-guided drug delivery to tumor blood vessels results in improved tumor growth delay. J. Control. Release 99(3):369–381, 2004

    Google Scholar 

  10. Gu J., Liu Y., Xia L., Wan H., Li P., Zhang X., Ruan C. (1997) Construction and expression of mouse–human chimeric antibody SZ-51 specific for activated platelet P-selectin. Thromb. Haemost. 77(4), 755–759

    PubMed  CAS  Google Scholar 

  11. Hallahan D. E., Geng L., Cmelak A. J., Chakravarthy A. B., Martin W., Scarfone C., Gonzalez A. (2001) Targeting drug delivery to radiation-induced neoantigens in tumor microvasculature. J. Control. Release 74, 183–191

    Article  PubMed  CAS  Google Scholar 

  12. Hallahan D., Geng L., Qu S., Scarfone C., Giorgio T., Donnelly E., Gao X., Clanton J. (2003) Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 3, 63–74

    Article  PubMed  CAS  Google Scholar 

  13. Hallahan D. E., Qu S., Geng L., Cmelak A., Chakravarthy A., Martin W., Scarfone C., Giorgio T. (2001) Radiation-mediated control of drug delivery. Am. J. Clin. Oncol. 24(5), 473–480

    Article  PubMed  CAS  Google Scholar 

  14. Hallahan D. E., Virudachalam S. (1999) Accumulation of P-selectin in the lumen of irradiated blood vessels. Radiat. Res. 152, 6–13

    Article  PubMed  CAS  Google Scholar 

  15. He X. Y., Xu Z., Melrose J., Mullowney A., Vasquez M., Queen C., Vexler V., Klingbeil C., Co M. S., Berg E. L. (1998) Humanization and pharmacokinetics of a monoclonal antibody with specificity for both E- and P-selectin. J. Immunol. 160(2), 1029–1035

    PubMed  CAS  Google Scholar 

  16. Hsu A. R., Hou L. C., Veeravagu A., Greve J. M., Vogel H., Tse V., Chen X. (2006) In vivo near-infrared fluorescence imaging of integrin αvβ3 in an orthotopic glioblastoma model. Mol. Imaging Biol. 8, 315–323

    Article  PubMed  Google Scholar 

  17. Kneuer C., Ehrhardt C., Radomski M. W., Bakowsky U. (2006) Selectins—potential pharmacological targets? Drug Discov. Today 11, 1034–1040

    Article  PubMed  CAS  Google Scholar 

  18. Kundu B. K., Stolin A. V., Pole J., Baumgart L., Fontaine M., Wojcik R., Kross B., Zorn C., Majewski S., Williams M. B. (2006) Tri-modality small animal imaging system. IEEE Trans. Nucl. Sci. 53(1), 66–70

    Article  CAS  Google Scholar 

  19. Kurome T., Katayama M., Murakami K., Hashino K., Kamihagi K., Yasumoto M., Kato I. (1994) Expression of recombinant mouse/human chimeric antibody specific to human GMP-140/P-selectin. J. Biochem. (Tokyo) 115(3), 608–614

    CAS  Google Scholar 

  20. Li C., Wang W., Wu Q., Ke S., Houston J., Sevick-Muraca E., Dong L., Chow D., Charnsangavej C., Gelovani J. G. (2006) Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. Nucl. Med. Biol. 33, 349–358

    Article  PubMed  CAS  Google Scholar 

  21. Lin P. C. (2003) Optical imaging and tumor angiogenesis. J. Cell. Biochem. 90, 484–491

    Article  PubMed  CAS  Google Scholar 

  22. Lin M. Z., Teitell M. A., Schiller G. J. (2005) The evolution of antibodies into versatile tumor-targeting agents. Clin. Cancer Res. 11, 129–138

    PubMed  CAS  Google Scholar 

  23. Lorant D. E., Topham M. K., Whatley R. E., McEver R. P., McIntyre T. M., Prescott S. M., Zimmerman G. A. (1993) Inflammatory roles of P-selectin. J. Clin. Invest. 92(2), 559–570

    Article  PubMed  CAS  Google Scholar 

  24. Lyons S. (2005) Advances in imaging mouse tumour models in vivo. J. Pathol. 205, 194–205

    Article  PubMed  CAS  Google Scholar 

  25. McCarron P. A., Olwill S. A., Marouf W. M. Y., Buick R. J., Walker B., Scott C. J. (2006) Antibody conjugates and therapeutic strategies. Mol. Interv. 6(2), 368–380

    Google Scholar 

  26. McEver R. P. (1994) Selectins. Curr. Opin. Immunol. 6(1), 75–84

    Article  PubMed  CAS  Google Scholar 

  27. McEver R. P. (1995) Regulation of function and expression of P-selectin. Agents Actions Suppl. 47, 117–119

    PubMed  CAS  Google Scholar 

  28. Milenic D. E., Brady E. D., Brechbiel M. W. (2004) Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov. 3, 488–498

    Article  PubMed  CAS  Google Scholar 

  29. Milenic D. E., Brechbiel M. W. (2004) Targeting of radio-isotopes for cancer therapy. Cancer Biol. Therapy 3(4), 361–370

    CAS  Google Scholar 

  30. Molenaar T. J. M., Twisk J., de Haas S. A. M., Peterse N., Vogelaar B. J. C. P, van Leeuwen S. H., Michon I. N., van Berkel T. J. C., Kuiper J., Biessen E. A. L. (2003) P-selectin as a candidate target in atherosclerosis. Biochem. Pharmacol. 66, 859–866

    Article  PubMed  CAS  Google Scholar 

  31. Neves A. A., Brindle K. M. (2006) Assessing responses to cancer therapy using molecular imaging. Biochim. Biophys. Acta 1766, 242–261

    PubMed  CAS  Google Scholar 

  32. Tsurushita N., Fu H., Melrose J., Berg E. L. (1998) Epitope mapping of mouse monoclonal antibody EP-5C7 which neutralizes both human E- and P-selectin. Biochem. Biophys. Res. Commun. 242(1), 197–201

    Article  PubMed  CAS  Google Scholar 

  33. Wachsberger P., Burd R., Dicker A. P. (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin. Cancer Res. 9, 1957–1971

    PubMed  CAS  Google Scholar 

  34. Walter U. M., Ayer L. M., Wolitzky B. A., Wagner D. D., Hynes R. O., Manning A. M., Issekutz A. C. (1997) Characterization of a novel adhesion function blocking monoclonal antibody to rat/mouse P-selectin generated in the P-selectin-deficient mouse. Hybridoma 16(3), 249–257

    PubMed  CAS  Google Scholar 

  35. Wu Y., Cai W., Chen X. (2006) Near-infrared fluorescence imaging of tumor integrin αvβ3 expression with Cy7-labeled RGD multimers. Mol. Imaging Biol. 8, 226–236

    Article  PubMed  Google Scholar 

  36. Wu C., Kobayashi H., Sun B., Yoo T. M., Paik C. H., Gansow O. A., Carrasquillo J. A., Pastan I., Brechbiel M. W. (1997) Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. Bioorg. Med. Chem. 5, 1925–1934

    Article  PubMed  CAS  Google Scholar 

  37. Wu A. M., Senter P. D. (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol. 23(9), 1137–1146

    Article  PubMed  CAS  Google Scholar 

  38. Zaheer A., Lenkinski R. E., Mahmood A., Jones A. G., Cantley L. C., Frangioni J. V. (2001) In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat. Biotechnol. 19, 1148–1154

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Cancer Institute grants R01-CA1256757, R21-CA128456, R01-CA112385, P30-CA68485, the Ingram Charitable Trust, and the Vanderbilt-Ingram Cancer Center. The research of Todd E. Peterson, Ph.D. was supported in part by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hallahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariri, G., Zhang, Y., Fu, A. et al. Radiation-Guided P-Selectin Antibody Targeted to Lung Cancer. Ann Biomed Eng 36, 821–830 (2008). https://doi.org/10.1007/s10439-008-9444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9444-9

Keywords

Navigation