Skip to main content
Log in

Integrating Epidemiological Data into a Mechanistic Model of Type 2 Diabetes: Validating the Prevalence of Virtual Patients

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mathematical models are playing an increasing role in understanding the complexity of multifactorial diseases like type 2 diabetes. The objective of this study was to validate a population of virtual patients against a real population of patients with type 2 diabetes. A population of virtual patients was created that incorporates different underlying pathogenic lesions consistent with a type 2 diabetic phenotype. These virtual patients were created within the Metabolism PhysioLab platform, a non-linear coupled differential algebraic model that incorporates the salient causal mechanisms underlying glucose homeostasis and substrate metabolism. The weights of each individual virtual patient were determined to reproduce the diversity in a real type 2 diabetic population obtained from the NHANES III study. As a validation test, this virtual population reproduced a series of clinical studies that identify less invasive biomarkers for insulin sensitivity. This approach demonstrates how computational bridges can be constructed between statistical approaches common in epidemiology and deterministic approaches common in biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

4D-PDF:

4-Dimensional probability density function

NHANES:

National Health and Nutrition Examination Survey

OGTT:

Oral glucose tolerance test

PCA:

Principal component analysis

VP:

Virtual patient

References

  1. American Diabetes Association Panel (2004) Guidelines for Computer Modeling of Diabetes and Its Complications. Diabetes 27:2262–2265

    Article  Google Scholar 

  2. Audoly S., Bellu G., D’Angio L., Saccomani M.P., Cobelli C. (2001). Global identifiability of nonlinear models of biological systems. IEEE Trans Biomed Eng 48:55–65

    Article  PubMed  CAS  Google Scholar 

  3. Balta, C., P. Finin, L. C. Habets, A. Halasz, M. Imielinski, V. Kumar, and H. Rubin, Understanding the bacterial stringent response using reachability analysis of hybrid systems. In: Proceedings of the 7th International Workshop on Hybrid Systems: Computation and Control, edited by R. Alur and G. J. Pappas, 2004, Lecture Notes in Computer Science, pp. 111–125.

  4. Bergman R.N., Ider Y.Z., Bowden C.R., Cobelli C. (1979). Quantitative estimation of insulin sensitivity. Am J Physiol 236:E667–E677

    PubMed  CAS  Google Scholar 

  5. Bonora E., Targher G., Alberiche M., Bonadonna R.C., Saggiani F., Zenere M.B., Monauni T., Muggeo M. (2000). Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 23:57–63

    Article  PubMed  CAS  Google Scholar 

  6. Brazhnik, P., K. Hall, D. Polidori, S. Q. Siler, and J. K. Trimmer. Method and apparatus for computer modeling diabetes. US Patent Application #10/040,373, 2002.

  7. Butler A.E., Janson J., Bonner-Weir S., Ritzel R., Rizza R.A., Butler P.C. (2003). Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  PubMed  CAS  Google Scholar 

  8. Danhof M., de Jongh J., De Lange E.C.M., Pasqua O.D., Ploeger B.A., Voskuyl R.A. (2007). Mechanism-Based Pharmacokinetic–Pharmacodynamic Modeling: Biophase Distribution, Receptor Theory, and Dynamical Systems Analysis. Annu Rev Pharmacol Toxicol 47:357–400

    Article  PubMed  CAS  Google Scholar 

  9. De Winter W., De Jongh J., Post T., Ploeger B.A., Urquhart R., Moules I., Eckland D., Danhof M. (2006). A mechanism-based disease progression model for comparison of the long-term effects of pioglitazone, meformin and glyclazide on disease processes underlying type 2 diabetes mellitus. J Pharmacokin Pharmacodyn 33:313–343

    Article  CAS  Google Scholar 

  10. DeFronzo R.A. (1988). Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37:667–687

    PubMed  CAS  Google Scholar 

  11. DeFronzo R.A., Bonadonna R.C., Ferrannini E. (1992). Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15:318–368

    Article  PubMed  CAS  Google Scholar 

  12. DeFronzo R.A., Tobin J.D., Andres R. (1979). Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223

    PubMed  CAS  Google Scholar 

  13. Eddy D.M., Schlessinger L. (2003). Archimedes: A trial-validated model of diabetes. Diabetes Care 26:3093–3101

    Article  PubMed  Google Scholar 

  14. Eddy D.M., Schlessinger L. (2003). Validation of the Archimedes Diabetes Model. Diabetes Care 26:3102–3110

    Article  PubMed  Google Scholar 

  15. Frayn K.N. (2003). Metabolic Regulation: A Human Perspective. Blackwell Publishing, Oxford, UK

    Google Scholar 

  16. Galetin A., Brown C., Hallifax D., Ito K., Houston J.B. (2004). Utility of recombinant enzyme kinetics in prediction of human clearance: impact of variability, CYP3A5, and CYP2C19 on CYP3A4 probe substrates. Drug Metab Dispos 32:1411–1420

    Article  PubMed  CAS  Google Scholar 

  17. Galvin P., Ward G., Walters J., Pestell R., Koschmann M., Vaag A., Martin I., Best J.D., Alford F. (1992). A simple method for quantitation of insulin sensitivity and insulin release from an intravenous glucose tolerance test. Diabet Med 9:921–928

    Article  PubMed  CAS  Google Scholar 

  18. Garvey W.T., Maianu L., Zhu J.H., Brechtel-Hook G., Wallace P., Baron A.D. (1998). Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101:2377–2386

    PubMed  CAS  Google Scholar 

  19. Hall K., Siler S.Q., Leipold R., Hager M., Trimmer J.K., Polidori D. (2002). Computer simulation of insulin therapy in type 2 diabetes: reduction of liver glycogen and counter-regulatory increase in food intake. Diabetes 51:A581

    Google Scholar 

  20. Hother-Nielsen O., Henriksen J.E., Holst J.J., Beck-Nielsen H. (1996). Effects of insulin on glucose turnover rates in vivo: isotope dilution versus constant specific activity technique. Metabolism 45:82–91

    Article  PubMed  CAS  Google Scholar 

  21. Jacquez J.A., Perry T. (1990). Parameter estimation: local identifiability of parameters. Am J Physiol 258:E727–E736

    PubMed  CAS  Google Scholar 

  22. Janssen I., Heymsfield S.B., Baumgartner R.N., Ross R. (2000). Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89:465–471

    PubMed  CAS  Google Scholar 

  23. Jolliffe I.T. (1995). Rotation of principal components: choice of normalization constraints. J Appl Stats 22:29–35

    Article  Google Scholar 

  24. Kaiser H.F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement 20:141–151

    Article  Google Scholar 

  25. Kansal A.R. (2004). Modeling Approaches to Type 2 Diabetes. Diabetes Technol Ther 6:39–47

    Article  PubMed  Google Scholar 

  26. Kansal A.R., Trimmer J.K. (2005). Application of predictive biosimulation within pharmaceutical clinical development: examples of significance for translational medicine and clinical trial design. IEE Proc Syst Biol 152:214–262

    Article  CAS  Google Scholar 

  27. Katz A., Nambi S.S., Mather K., Baron A.D., Follmann D.A., Sullivan G., Quon M.J. (2000). Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85:2402–2410

    Article  PubMed  CAS  Google Scholar 

  28. Khattree R., Naik D.N. (2000). Multivariate Data Reduction and Discrimination with SAS Software. SAS Institute Inc., Cary, NC

    Google Scholar 

  29. Kyle U.G., Genton L., Slosman D.O., Pichard C. (2001). Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition 17:534–541

    Article  PubMed  CAS  Google Scholar 

  30. Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. (1985). Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  31. National Center for Health Statistics, National Health and Nutrition Examination Survey III. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 1994, URL http://www.cdc.gov/nchs/nhanes.htm

  32. Pearl J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York

    Google Scholar 

  33. Petersen K.F., Laurent D., Rothman D.L., Cline G.W., Shulman G.I. (1998). Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest 101:1203–1209

    PubMed  CAS  Google Scholar 

  34. Petersen K.F., Laurent D., Yu C., Cline G.W., Shulman G.I. (2001). Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes 50:1263–1268

    Article  PubMed  CAS  Google Scholar 

  35. Polonsky K.S., Given B.D., Van Cauter E. (1988). Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 81:442–448

    Article  PubMed  CAS  Google Scholar 

  36. Roden M., Price T.B., Perseghin G., Petersen K.F., Rothman D.L., Cline G.W., Shulman G.I. (1996). Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859–2865

    PubMed  CAS  Google Scholar 

  37. Sheiner L., Wakefield J. (1999). Population Modelling in Drug Development. Stat Methods Med Res 8:183–193

    Article  PubMed  CAS  Google Scholar 

  38. Stumvoll M. (2004). Control of glycaemia: from molecules to men. Minkowski Lecture 2003. Diabetologia 47:770–781

    Article  PubMed  CAS  Google Scholar 

  39. Tabachnick B.G., Fidell L.S. (1996). Using Multivariate Statistics. HarperCollins College Publishers, New York

    Google Scholar 

  40. Vella A., Shah P., Basu R., Basu A., Camilleri M., Schwenk W.F., Rizza R.A. (2002). Effect of enteral vs. parenteral glucose delivery on initial splanchnic glucose uptake in nondiabetic humans. Am J Physiol Endocrinol Metab 283:E259–E266

    PubMed  CAS  Google Scholar 

  41. Yokoyama H., Emoto M., Fujiwara S., Motoyama K., Morioka T., Komatsu M., Tahara H., Koyama H., Shoji T., Inaba M., Nishizawa Y. (2004). Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment are useful indexes of insulin resistance in type 2 diabetic patients with wide range of fasting plasma glucose. J Clin Endocrinol Metab 89:1481–1484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the contributions of several people to this work. Paul Brazhnik, Kevin Hall, Dave Polidori, Scott Siler, and Jeff Trimmer contributed to creating the Metabolism PhysioLab platform. Dave Polidori, Scott Siler, MariaLuisa Ruiz, and Arthur Lo contributed to creating virtual patients used in this study. Tom Paterson, Leif Wennerberg, and Christina Friedrich contributed to developing concepts related to prevalence assessment of virtual patients populations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Klinke II.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinke, D.J. Integrating Epidemiological Data into a Mechanistic Model of Type 2 Diabetes: Validating the Prevalence of Virtual Patients. Ann Biomed Eng 36, 321–334 (2008). https://doi.org/10.1007/s10439-007-9410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9410-y

Keywords

Navigation