Skip to main content

Advertisement

Log in

Regional Analysis of Spontaneous MEG Rhythms in Patients with Alzheimer’s Disease Using Spectral Entropies

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common form of dementia. Ageing is the greatest known risk factor for this disorder. Therefore, the prevalence of AD is expected to increase in western countries due to the rise in life expectancy. Nowadays, a low diagnosis accuracy is reached, but an early and accurate identification of AD should be attempted. In this sense, only a few studies have focused on the magnetoencephalographic (MEG) AD patterns. This work represents a new effort to explore the ability of three entropies from information theory to discriminate between spontaneous MEG rhythms from 20 AD patients and 21 controls. The Shannon (SSE), Tsallis (TSE), and Rényi (RSE) spectral entropies were calculated from the time-frequency distribution of the power spectral density (PSD). The entropies provided statistically significant lower values for AD patients than for controls in all brain regions (p < 0.0005). This fact suggests a significant loss of irregularity in AD patients’ MEG activity. Maximal accuracy of 87.8% was achieved by both the TSE and RSE (90.0%, sensitivity; 85.7%, specificity). The statistically significant results obtained by both the extensive (SSE and RSE) and non-extensive (TSE) spectral entropies suggest that AD could disturb long and short-range interactions causing an abnormal brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abásolo D., R. Hornero, P. Espino, D. Álvarez, J. Poza 2006 Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol. Meas. 27:241–253

    Article  PubMed  Google Scholar 

  2. Aviyente S., L. A. W. Brakel, R. K. Kushwaha, M. Snodgrass, H. Shevrin, W. J. Willians 2004 Characterization of event related potentials using information theoretic distances measures. IEEE Trans. Biomed. Eng. 51:737–743

    Article  PubMed  Google Scholar 

  3. Baraniuk R. G., P. Flandrin, A. J. E. M. Janssen, O. J. J. Michel 2001 Measuring time-frequency information content using the Rényi entropies. IEEE Trans. Inform. Theory 47:1391–1409

    Article  Google Scholar 

  4. Berendse H. W., J. P. A. Verbunt, Ph. Scheltens, B. W. van Dijk, E. J. Jonkman 2000 Magnetoencephalographic analysis of cortical activity in Alzheimer’s disease: a pilot study. Clin. Neurophysiol. 111:604–612

    Article  PubMed  CAS  Google Scholar 

  5. Berezianos A., S. Tong, N. Thakor 2003 Time-dependent entropy estimation of EEG rhythm changes following brain ischemia. Ann. Biomed. Eng. 31:221–232

    Article  Google Scholar 

  6. Bird T. D. 2001 Alzheimer’s disease and other primary dementias. In: Braunwald E., Fauci A. S., Kasper D. L., Hauser S. L., Longo D. L., Jameson J. L. (eds) Harrison’s Principles of Internal Medicine. McGraw-Hill, New York, pp. 2391–2399

    Google Scholar 

  7. Blennow K., M. J. de Leon, H. Zetterberg 2006 Alzheimer’s disease. Lancet 368:387–403

    Article  PubMed  CAS  Google Scholar 

  8. van Cappellen van Walsum A.-M., Y. A. L. Pijnenburg, H. W. Berendse, B. W. van Dijk, D. L. Knol, Ph. Scheltens, C. J. Stam 2003 A neural complexity measure applied to MEG data in Alzheimer’s disease. Clin. Neurophysiol. 114:1034–1040

    Article  PubMed  Google Scholar 

  9. Capurro A., L. Diambra, D. Lorenzo, O. Macadar, M. T. Martin, C. Mostaccio, A. Plastino, J. Pérez, E. Rofman, M. E. Torres, J. Velluti 1999 Human brain dynamics: the analysis of EEG signals with Tsallis information measure. Physica A 265:235–254

    Article  Google Scholar 

  10. Capurro A., L. Diambra, D. Lorenzo, O. Macadar, M. T. Martin, C. Mostaccio, A. Plastino, E. Rofman, M. E. Torres, J. Velluti 1998 Tsallis entropy and cortical dynamics: the analysis of EEG signals. Physica A 257:149–155

    Article  Google Scholar 

  11. Cummings J. L. 2004 Alzheimer’s disease. N. Engl. J. Med. 351:56–67

    Article  PubMed  CAS  Google Scholar 

  12. Di Sisto R. P., S. Martinez, R. B. Orellana, A. R. Plastino, A. Plastino 1999 General thermostatistical formalisms, invariance under uniform spectrum translations, and Tsallis q-additivity. Physica A 265:590–613

    Article  Google Scholar 

  13. Fernández A., R. Hornero, A. Mayo, J. Poza, P. Gil-Gregorio, T. Ortiz 2006 MEG spectral profile in Alzheimer’s disease and mild cognitive impairment. Clin. Neurophysiol. 117:306–314

    Article  PubMed  Google Scholar 

  14. Fernández A., R. Hornero, A. Mayo, J. Poza, F. Maestú, T. Ortiz 2006 Quantitative magnetoencephalography of spontaneous brain activity in Alzheimer disease: an exhaustive frequency analysis. Alzheimer Dis. Assoc. Dis. 20:153–159

    Article  Google Scholar 

  15. Fernández A., F. Maestú, C. Amo, P. Gil, T. Fehr, C. Wienbruch, B. Rockstroh, T. Elbert, T. Ortiz 2002 Focal temporoparietal slow activity in Alzheimer’s disease revealed by magnetoencephalography. Biol. Psychiat. 52:764–770

    Article  PubMed  Google Scholar 

  16. Fernández A., A. Turrero, P. Zuluaga, P. Gil, F. Maestú, P. Campo, T. Ortiz 2006 Magnetoencephalographic parietal delta dipole density in mild cognitive impairment: preliminary results of a method to estimate the risk of developing Alzheimer disease. Arch. Neurol. 63:427–430

    Article  PubMed  Google Scholar 

  17. Folstein M. F., S. E. Folstein, P. R. McHugh 1975 Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12:189–198

    Article  PubMed  CAS  Google Scholar 

  18. Franciotti R., D. Iacono, S. Della Penna, V. Pizzella, K. Torquati, M. Onofrj, G. L. Romani 2006 Cortical rhythms reactivity in AD, LBD and normal subjects. A quantitative MEG study. Neurobiol. Aging 27:1100–1109

    Article  PubMed  CAS  Google Scholar 

  19. Gómez C., R. Hornero, D. Abásolo, A. Fernández, M. López 2006 Complexity analysis of the magnetoencephalogram background activity in Alzheimer’s disease patients. Med. Eng. Phys. 28:851–859

    Article  PubMed  Google Scholar 

  20. Hari R. 2005 Magnetoencephalography in clinical neurophysiological assessment of human cortical functions. In: Niedermeyer E., Lopes da Silva F. (eds) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th ed. Lippincontt Williams & Wilkins, Philadelphia, pp. 1165–1197

    Google Scholar 

  21. Hämäläinen M., R. Hari, R. J. Ilmoniemi, J. Knuutila, O. V. Lounasmaa 1993 Magnetoencephalography—theory, instrumentation, and applications to non-invasive studies of the working human brain. Rev. Mod. Phys. 65:413–497

    Article  Google Scholar 

  22. Inouye T., K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. Iyama, Y. Katsuda, M. Hirano 1991 Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 79:204–210

    Article  PubMed  CAS  Google Scholar 

  23. Jeong J. 2004 EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 115:1490–1505

    Article  PubMed  Google Scholar 

  24. Kannathal N., M. L. Choob, U. R. Acharyab, P. K. Sadasivana 2005 Entropies for detection of epilepsy in EEG. Comput. Meth. Prog. Biomed. 80:187–194

    Article  CAS  Google Scholar 

  25. Knopman, D. S., S. T. DeKosky, J. L. Cummings, H. Chui, J. Corey-Bloom, N. Relkin, G. W. Small, B. Miller, and J. C. Stevens. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the quality standards subcommittee of the American Academy of Neurology. Neurology 56:1143–1153, 2001

    Google Scholar 

  26. de Leon M. J., W. Klunk 2006 Biomarkers for the early diagnosis of Alzheimer’s disease. Lancet Neurol. 5:198–199

    Article  PubMed  Google Scholar 

  27. McKhann, G., D. Drachman, M. Folstein, R. Katzman, D. Price, and E. M. Stadlan. Clinical diagnosis of Alzheimer’s disease: report of NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34:939–944, 1984

    Google Scholar 

  28. Osipova D., J. Ahveninen, O. Jensen, A. Ylikoski, E. Pekkonen 2005 Altered generation of spontaneous oscillations in Alzheimer’s disease. Neuroimage 27:835–841

    Article  PubMed  Google Scholar 

  29. Osipova D., K. Rantanen, J. Ahveninen, R. Ylikoski, O. Happola, T. Strandberg, E. Pekkonen 2006 Source estimation of spontaneous MEG oscillations in mild cognitive impairment. Neurosci. Lett. 405:57–61

    Article  PubMed  CAS  Google Scholar 

  30. Poza, J., R. Hornero, D. Abásolo, A. Fernández, and J. Escudero. Analysis of spontaneous MEG activity in patients with Alzheimer’s disease using spectral entropies. In: Proc. of the 29th Ann. Int. Conf. of the IEEE EMBS, Lyon, France, 2007, pp 6179–6182

  31. Poza, J., R. Hornero, D. Abásolo, A. Fernández, and M. García. Extraction of spectral based measures from MEG background oscillations in Alzheimer’s disease. Med. Eng. Phys., 2006 (in press). Available: doi: 10.1016/j.medengphy.2006.11.006

  32. Reisberg B. 1988 Functional assessment staging (FAST). Psychopharmacol. Bull. 24:653–659

    PubMed  CAS  Google Scholar 

  33. Rosso O. A., M. T. Martin, A. Figliola, K. Keller, A. Plastino 2006 EEG analysis using wavelet-based information tools. J. Neurosci. Methods 153:163–182

    Article  PubMed  CAS  Google Scholar 

  34. Rossor M. 2001 Alzheimer’s disease. In: Donaghy M. (ed) Brain’s Diseases of the Nervous System. University Press, Oxford, pp. 750–754

    Google Scholar 

  35. Rényi A. 1970 Probability Theory. Amsterdam: North-Holland

    Google Scholar 

  36. Sleigh J. W., D. A. Steyn-Ross, C. Grant, G. Ludbrook 2004 Cortical entropy changes with general anaesthesia: theory and experiment. Physiol. Meas. 25:921–934

    Article  PubMed  CAS  Google Scholar 

  37. Stam C. J. 2005 Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116:2266–2301

    Article  PubMed  CAS  Google Scholar 

  38. Stam C. J., A. M. van Cappellen van Walsum, Y. A. L. Pijnenburg, H. W. Berendse, J. C. de Munck, Ph. Scheltens, B. W. van Dijk 2002 Generalized synchronization of MEG recordings in Alzheimer’s disease: evidence for involvement of the gamma band. J. Clin. Neurophysiol. 19:562–574

    Article  PubMed  Google Scholar 

  39. Stam C. J., B. F. Jones, I. Manshanden, A. M. van Cappellen van Walsum, T. Montez, J. P. Verbunt, J. C. de Munck, B. W. van Dijk, H. W. Berendse, P. Scheltens 2006 Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage 32:1335–1344

    Article  PubMed  CAS  Google Scholar 

  40. Tong S., A. Berezianos, J. Paul, Y. Zhu, N. Thakor 2002 Nonextensive entropy measure of EEG following brain injury from cardiac arrest. Physica A 305:619–628

    Article  Google Scholar 

  41. Tong S., A. Bezerianos, A. Malhotra, Y. Zhu, N. Thakor 2003 Parameterized entropy analysis of EEG following hypoxic–ischemic brain injury. Phys. Lett. A 314:354–361

    Article  CAS  Google Scholar 

  42. Tsallis C. 1988 Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52:479–487

    Article  Google Scholar 

  43. Tsallis C. 1998 Generalized entropy-based criterion for consistent testing. Phys. Rev. E 58:1442–1445

    Article  CAS  Google Scholar 

  44. Vellas B., S. Andrieu, C. Sampaio, G. Wilcock 2007 (for the European Task Force group). Disease-modifying trials in Alzheimer’s disease: a European task force consensus. Lancet Neurol. 6:56–62

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the grant project VA108A06 from “Consejería de Educación de Castilla y León” and by the “Ministerio de Educación y Ciencia” and FEDER grant MTM2005-08519-C02-01. The authors would like to thank the “Asociación de Enfermos de Alzheimer” (AFAL) for supplying the patients who have participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Poza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poza, J., Hornero, R., Escudero, J. et al. Regional Analysis of Spontaneous MEG Rhythms in Patients with Alzheimer’s Disease Using Spectral Entropies. Ann Biomed Eng 36, 141–152 (2008). https://doi.org/10.1007/s10439-007-9402-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9402-y

Keywords

Navigation