Skip to main content

Advertisement

Log in

A Modular Tissue Engineering Construct Containing Smooth Muscle Cells and Endothelial Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Human umbilical vein endothelial cells (HUVEC) were seeded on sub-mm sized collagen cylinders containing embedded umbilical vein smooth muscle cells (UVSMC). These cylindrical “modules” are intended to be used as a vascularized construct, in which HUVEC lined channels are created by the random packing of the modules in situ or within a larger container. Embedding UVSMC cultured in medium containing 10% FBS had an adverse effect on subsequently seeded HUVEC junction morphology; HUVEC/UVSMC co-culturing was done in HUVEC medium (2% FBS with the addition of 0.03 mg/mL endothelial cell growth supplement) as compared to HUVEC seeded on collagen-only modules. In contrast, embedding UVSMC cultured in serum-free medium prior to embedding improved EC junction morphology. Such serum-free culturing, also prevented the UVSMC induced contraction of the collagen modules. On the other hand, embedding serum-free cultured UVSMC promoted HUVEC proliferation and NO secretion compared to those modules embedded with 10% serum cultured UVSMC. These results suggest, not surprisingly, that embedded UVSMC phenotype plays an important role in the seeded HUVEC phenotype, and that the response can be modulated by the UVSMC culture medium serum concentration. These studies were undertaken with a view to using the UVSMC to modulate the thrombogenicity of the HUVEC. Exploration of this outcome awaits further studies directed to understanding the mechanism of the cellular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. A. Armulik, A. Abramsson, C. Betsholtz (2005) Endothelial/pericyte interactions. Circ. Res. 97:512–523

    Article  PubMed  CAS  Google Scholar 

  2. C. H. Arts, J. D. Blankensteijn, G. J. Heijnen-Snyder, H. J. Verhagen, P. P. Hedeman Joosten, J. J. Sixma, B. C. Eikelboom, P. G. de Groot (2002) Reduction of non-endothelial cell contamination of microvascular endothelial cell seeded grafts decreases thrombogenicity and intimal hyperplasia. Eur. J. Vasc. Endovasc. Surg. 23:404–412

    Article  PubMed  CAS  Google Scholar 

  3. O. Ayalon, H. Sabanai, M. G. Lampugnani, E. Dejana, B. Geiger (1994) Spatial and temporal relationships between cadherins and PECAM-1 in cell-cell junctions of human endothelial cells. J. Cell Biol. 126:247–258

    Article  PubMed  CAS  Google Scholar 

  4. A. P. Banning, P. H. Groves, L. D. Buttery, J. Wharton, R. A. Rutherford, P. Black, F. Winkler, J. M. Polak, M. J. Lewis, H. Drexler (1999) Reciprocal changes in endothelial and inducible nitric oxide synthase expression following carotid angioplasty in the pig. Atherosclerosis 145:17–32

    Article  PubMed  CAS  Google Scholar 

  5. D. Behrendt, P. Ganz (2002) Endothelial function. From vascular biology to clinical applications. Am. J. Cardiol. 90:40L–48L

    Article  PubMed  CAS  Google Scholar 

  6. H. Cai, D. G. Harrison (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87:840–844

    PubMed  CAS  Google Scholar 

  7. Y. J. Chiu, K. Kusano, T. N. Thomas, K. Fujiwara (2004) Endothelial cell-cell adhesion and mechanosignal transduction. Endothelium 11:59–73

    Article  PubMed  CAS  Google Scholar 

  8. C. Daly, V. Wong, E. Burova, Y. Wei, S. Zabski, J. Griffiths, K. M. Lai, H. C. Lin, E. Ioffe, G. D. Yancopoulos, J. S. Rudge (2004) Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev. 18:1060–1071

    Article  PubMed  CAS  Google Scholar 

  9. G. Di Luozzo, J. Bhargava, R. J. Powell (2000) Vascular smooth muscle cell effect on endothelial cell endothelin-1 production. J. Vasc. Surg. 31:781–789

    Article  PubMed  CAS  Google Scholar 

  10. M. F. Fillinger, L. N. Sampson, J. L. Cronenwett, R. J. Powell, R. J. Wagner (1997) Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. J. Surg. Res. 67:169–178

    Article  PubMed  CAS  Google Scholar 

  11. H. P. Gerber, A. McMurtrey, J. Kowalski, M. Yan, B. A. Keyt, V. Dixit, N. Ferrara (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273:30336–30343

    Article  PubMed  CAS  Google Scholar 

  12. C. M. Giachelli, N. Bae, M. Almeida, D. T. Denhardt, C. E. Alpers, S. M. Schwartz (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J. Clin. Invest. 92:1686–1696

    Article  PubMed  CAS  Google Scholar 

  13. R. Govers, L. Bevers, P. de Bree, T. J. Rabelink (2002) Endothelial nitric oxide synthase activity is linked to its presence at cell-cell contacts. Biochem. J. 361:193–201

    Article  PubMed  CAS  Google Scholar 

  14. K. Hamada, T. Sasaki, P. A. Koni, M. Natsui, H. Kishimoto, J. Sasaki, N. Yajima, Y. Horie, G. Hasegawa, M. Naito, J. Miyazaki, T. Suda, H. Itoh, K. Nakao, T. W. Mak, T. Nakano, A. Suzuki (2005) The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 19:2054–2065

    Article  PubMed  CAS  Google Scholar 

  15. G. K. Hansson, Y. J. Geng, J. Holm, P. Hardhammar, A. Wennmalm, E. Jennische (1994) Arterial smooth muscle cells express nitric oxide synthase in response to endothelial injury. J. Exp. Med. 180:733–738

    Article  PubMed  CAS  Google Scholar 

  16. R. J. Hendrickson, C. Cappadona, E. N. Yankah, J. V. Sitzmann, P. A. Cahill, E. M. Redmond (1999) Sustained pulsatile flow regulates endothelial nitric oxide synthase and cyclooxygenase expression in co-cultured vascular endothelial and smooth muscle cells. J. Mol. Cell Cardiol. 31:619–629

    Article  PubMed  CAS  Google Scholar 

  17. C. L. Ives, S. G. Eskin, L. V. McIntire (1986) Mechanical effects on endothelial cell morphology: in vitro assessment. In vitro Cell Dev. Biol. 22:500–507

    Article  PubMed  CAS  Google Scholar 

  18. K. N. Kader, R. Akella, N. P. Ziats, L. A. Lakey, H. Harasaki, J. P. Ranieri, R. V. Bellamkonda (2000) eNOS-overexpressing endothelial cells inhibit platelet aggregation and smooth muscle cell proliferation in vitro. Tissue Eng. 6:241–251

    Article  PubMed  CAS  Google Scholar 

  19. T. Korff, S. Kimmina, G. Martiny-Baron, H. G. Augustin (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J. 15:447–457

    Article  PubMed  CAS  Google Scholar 

  20. Kuhlencordt, P. J., E. Rosel, R. E. Gerszten, M. Morales-Ruiz, D. Dombkowski, W. J. Atkinson, F. Han, F. Preffer, A. Rosezweig, W. C. Sessa, M. A. Gimbrone, G. Ertl, and P. L. Huang. The role of endothelial nitric oxide synthase (eNOS) in endothelial activation: insights from eNOS-knockout endothelial cells. Am. J. Physiol. Cell Physiol. 286(5):C1195–C1202, 2004

    Google Scholar 

  21. M. D. Lavender, Z. Pang, C. S. Wallace, L. E. Niklason, G. A. Truskey (2005) A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials 26:4642–4653

    Article  PubMed  CAS  Google Scholar 

  22. S. Li, J. J. Moon, H. Miao, G. Jin, B. P. Chen, S. Yuan, Y. Hu, S. Usami, S. Chien (2003) Signal transduction in matrix contraction and the migration of vascular smooth muscle cells in three-dimensional matrix. J. Vasc. Res. 40:378–388

    Article  PubMed  CAS  Google Scholar 

  23. S. Loughna, T. N. Sato (2001) Angiopoietin and Tie signaling pathways in vascular development. Matrix Biol. 20:319–325

    Article  PubMed  CAS  Google Scholar 

  24. K. Matter, M. S. Balda (2003) Functional analysis of tight junctions. Methods 30:228–234

    Article  PubMed  CAS  Google Scholar 

  25. McGuigan, A. P., and M.V. Sefton. Design and fabrication of sub-mm-sized modules containing encapsulated cells for modular tissue engineering. Tissue Eng. 3(5):1069–1078, 2007

    Google Scholar 

  26. A. P. McGuigan, M. V. Sefton (2006) Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl. Acad. Sci. USA 103:11461–11466

    Article  PubMed  CAS  Google Scholar 

  27. A. P. McGuigan, M. V. Sefton (2007) The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials 28:2547–2571

    Article  PubMed  CAS  Google Scholar 

  28. O. Ogut, F. V. Brozovich (2003) Regulation of force in vascular smooth muscle. J. Mol. Cell Cardiol. 35:347–355

    Article  PubMed  CAS  Google Scholar 

  29. G. K. Owens, M. S. Kumar, B. R. Wamhoff (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84:767–801

    Article  PubMed  CAS  Google Scholar 

  30. S. Pasquet, P. Thiebaud, C. Faucheux, M. Olive, S. Fourcade, N. Lalevee, J. M. Lamaziere, N. Theze (2004) Characterization of a mammalian smooth muscle cell line that has retained transcriptional and posttranscriptional potencies. In vitro Cell Dev. Biol. Anim. 40:133–137

    Article  PubMed  CAS  Google Scholar 

  31. R. J. Powell, J. Bhargava, M. D. Basson, B. E. Sumpio (1998) Coculture conditions alter endothelial modulation of TGF-beta 1 activation and smooth muscle growth morphology. Am. J. Physiol. 274:H642–H649

    PubMed  CAS  Google Scholar 

  32. M. Scharpfenecker, U. Fiedler, Y. Reiss, H. G. Augustin (2005) The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J. Cell Sci. 118:771–780

    Article  PubMed  CAS  Google Scholar 

  33. A. P. Selwyn (2003) Prothrombotic and antithrombotic pathways in acute coronary syndromes. Am. J. Cardiol. 91:3H–11H

    Article  PubMed  CAS  Google Scholar 

  34. M. She, A. P. McGuigan, M. V. Sefton (2007) Tissue factor and thrombomodulin expression on endothelial cell-seeded collagen modules for tissue engineering. J. Biomed. Mater. Res. A 80:497–504

    PubMed  Google Scholar 

  35. Suzuki, H., K. Eguchi, H. Ohtsu, S. Higuchi, S. Dhobale, G. D. Frank, E. D. Motley, and S. Eguchi. Activation of endothelial nitric oxide synthase by the angiotensin II type-1 receptor. Endocrinology 147(12):5914–5920, 2006

    Google Scholar 

  36. S. K. Williams, D. G. Rose, B. E. Jarrell (1994) Microvascular endothelial cell sodding of ePTFE vascular grafts: improved patency and stability of the cellular lining. J. Biomed. Mater. Res. 28:203–212

    Article  PubMed  CAS  Google Scholar 

  37. X. Zhao, X. Li, S. Trusa, S. C. Olson (2005) Angiotensin type 1 receptor is linked to inhibition of nitric oxide production in pulmonary endothelial cells. Regul. Pept. 132:113–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Alan Rosenthal for his technical assistance with confocal microscopy. The project was supported by the National Institute of Health (EB001013, co-investigators, E. Yeo, A. Gotlieb) and the Natural Sciences and Engineering Research Council, BL acknowledges the fellowship support of the Canadian Institutes of Health Research Training Program in Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Sefton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, B.M., Sefton, M.V. A Modular Tissue Engineering Construct Containing Smooth Muscle Cells and Endothelial Cells. Ann Biomed Eng 35, 2039–2049 (2007). https://doi.org/10.1007/s10439-007-9380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9380-0

Keywords

Navigation