Skip to main content
Log in

Spatio-temporal Flow Analysis in Bileaflet Heart Valve Hinge Regions: Potential Analysis for Blood Element Damage

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Point-wise velocity measurements have been traditionally acquired to estimate blood damage potential induced by prosthetic heart valves with emphasis on peak values of velocity magnitude and Reynolds stresses. However, the inherently Lagrangian nature of platelet activation and hemolysis makes such measurements of limited predictive value. This study provides a refined fluid mechanical analysis, including blood element paths and stress exposure times, of the hinge flows of a CarboMedics bileaflet mechanical heart valve placed under both mitral and aortic conditions and a St Jude Medical bileaflet valve placed under aortic conditions. The hinge area was partitioned into characteristic regions based on dominant flow structures and spatio-temporal averaging was performed on the measured velocities and Reynolds shear stresses to estimate the average bulk stresses acting on blood elements transiting through the hinge. A first-order estimate of viscous stress levels and exposure times were computed. Both forward and leakage flow phases were characterized in each partition by dynamic flows dependent on subtle leaflet movements and transvalvular pressure fluctuations. Blood elements trapped in recirculation regions may experience exposure times as long as the entire forward flow phase duration. Most calculated stresses were below the accepted blood damage threshold. Estimates of the stress levels indicate that the flow conditions within the boundary layers near the hinge and leaflet walls may be more detrimental to blood cells than bulk flow conditions, while recirculation regions may promote thrombus buildup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Anderson G. H., et al. (1978) Platelet lysis and aggregation in shear fields. Blood Cells 4(3):499–511

    PubMed  CAS  Google Scholar 

  2. Bacher R. P., M. C. Williams (1970) Hemolysis in capillary flow. J. Lab. Clin. Med. 76(3):485–496

    PubMed  CAS  Google Scholar 

  3. Belval T. K., J. D. Hellums (1986) Analysis of shear-induced platelet aggregation with population balance mathematics. Biophys. J. 50(3):479–487

    PubMed  CAS  Google Scholar 

  4. Bernstein E. F., U. Marzec, G. G. Johnston (1977) Structural correlates of platelets functional damage by physical forces. Trans. Am. Soc. Artif. Intern. Organs 23:617–625

    PubMed  CAS  Google Scholar 

  5. Blackshear P. L., et al. (1966) Shear wall interaction and hemolysis. ASAIO J. 12:113–120

    Google Scholar 

  6. Blackshear P. L. (1972) Hemolysis at prosthetic surfaces. In: Hair M. R. (ed.) Chemistry of Biosurface. Marcel Dekker, New York, pp. 523–62

    Google Scholar 

  7. Blackshear, P. L. Mechanical hemolysis in flowing blood. In: Biomechanics: Its Foundation and Objectives, edited by Y.C. Fung, N. Perrone, and M. Anliker. Englewood Cliffs, NJ: P. Hall, pp. 501–525, 1972

  8. Brown C. H., et al. (1975) Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J. Lab. Clin. Med. 3:462–474

    Google Scholar 

  9. Brown C. H., et al. (1975) Response of human platelets to shear stress. Trans. Am. Soc.Artif. Intern. Organs 21:35–38

    PubMed  CAS  Google Scholar 

  10. Ellis J., et al. (1996) Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical heart valve with clear housing. J. Heart Valve Dis. 5(6):591–599

    PubMed  CAS  Google Scholar 

  11. Ellis J. T., B. R. Travis, A. P. Yoganathan (2000) An in vitro study of the hinge and near-field forward flow dynamics of the St. Jude Medical® Regent™ bileaflet mechanical heart valve. Ann. Biomed. Eng. 28:524–532

    Article  PubMed  CAS  Google Scholar 

  12. Forstrom R. J. (1969) A New Measure of Erythrocyte Membrane Strength. University of Minnesota, Minneapolis

    Google Scholar 

  13. Grigioni M., et al. (1999) A discussion on the threshold limit for hemolysis related to Reynolds shear stress. J. Biomech. 32(10):1107–1112

    Article  PubMed  CAS  Google Scholar 

  14. Grigioni M., et al. (2004) The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif. Organs 28(5):467–475

    Article  PubMed  Google Scholar 

  15. Gross J. M., et al. (1996) A microstructural flow analysis within a bileaflet mechanical heart valve hinge. J. Heart Valve Dis. 5(6):581–590

    PubMed  CAS  Google Scholar 

  16. Hellums, J. D., and C. H. I. Brown. Blood cell damage by mechanical forces. In: Cardiovascular Flow Dynamics and Measurements, edited by N. H. C. Hwang, and N. A. Normann. Baltimore: University Park Press, 1977, pp. 799–822

  17. Indeglia R. A., et al. (1968) Influence of mechanical forces on erythrocyte sublethal damage. Trans. Am. Soc. Artif. Intern. Organs 14:264

    PubMed  CAS  Google Scholar 

  18. Keshaviah, J. M. S. Thesis. University of Minnesota, Minneapolis, 1970

  19. Leo H.-L., et al. (2002) Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design. J. Thoracic Cardiovas. Surg. 124(3):561–574

    Article  Google Scholar 

  20. Leo H.-L. (2005) An in vitro Investigation of the Flow Fields Through Bileaflet and Polymeric Prosthetic Heart Valves, in Biomedical Engineering Department. Georgia Institute of Technology, Atlanta

    Google Scholar 

  21. Leverett L. B., et al. (1972) Red blood cell damage by shear stress. Biophys. J. 12:257–273

    PubMed  CAS  Google Scholar 

  22. Lu P. C., H. C. Lai, J. S. Liu (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34:1361–1364

    Article  PubMed  CAS  Google Scholar 

  23. Nevaril, C. G., et al. Erythrocyte damage and destruction induced by shearing stress. J. Lab. Clin. Med. 71:784, 1968

    Google Scholar 

  24. Rooney J. A. (1970) Hemolysis near an ultrasonically pulsating gas bubble. Science 169(948):869–871

    Article  PubMed  CAS  Google Scholar 

  25. Sallam A. M., N. H. C. Hwang (1984) Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 21:783–797

    PubMed  CAS  Google Scholar 

  26. Simon H. A., et al. (2004) Comparison of the hinge flow fields of two bileaflet mechanical heart valves under aortic and mitral conditions. Ann. Biomed. Eng. 32(12):1607–1617

    Article  PubMed  Google Scholar 

  27. Simon H. S. (2004) Influence of the Implant Location on the Hinge and Leakage Flow Fields Through Bileaflet Mechanical Heart Valves, in Chemical and Biomolecular Engineering Department. Georgia Institute of Technology, Atlanta

    Google Scholar 

  28. Slack S. M., Y. Cui, V. T. Turitto (1993) The effects of flow on blood coagulation and thrombosis. Thromb Haemostasis 70(1):129–134

    CAS  Google Scholar 

  29. Slack S. M., L. K. Jennings, V. T. Turitto (1994) Platelet-size distribution measurements as indicators of shear stres-induced platelet aggregation. Ann Biomed Eng 22:653–659

    Article  PubMed  CAS  Google Scholar 

  30. Sutera S. P., P. Croce, M. H. Mehrjardi (1972) Hemolysis and subhemolytic alterations of human RBC induced by turbulent shear flow. ASAIO Trans. 18:335–341

    Article  CAS  Google Scholar 

  31. Sutera S. P., M. H. Mehrjardi (1975) Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys. J. 15:1–10

    Article  PubMed  CAS  Google Scholar 

  32. Williams, A. R. Shear-induced fragmentation of human erythrocytes. Biorheology 10:303–311, 1972

    Google Scholar 

  33. Williams A. R., D. E. Hughes, W. L. Nyborg (1970) Hemolysis near a transversely oscillating wire. Science 169(948):871–873

    Article  PubMed  Google Scholar 

  34. Wurzinger L. J., et al. (1985) Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb Haemostasis 54:381–386

    CAS  Google Scholar 

  35. Wurzinger L. J., et al. (1985) “Shear induced platelet activation”—a critical reappraisal. Biorheology 22(5):399–413

    PubMed  CAS  Google Scholar 

  36. Wurzinger L. J., P. Blasberg, H. Schmid-Schonbein (1985) Towards a concept of thrombosis in accelerated flow: rheology, fluid dynamics, and biochemistry. Biorheology 22:437–449

    PubMed  CAS  Google Scholar 

  37. Wurzinger L. J., R. Opitz, H. Eckstein (1986) Mechanical blood trauma: an overview. Angeiologie 38:81–97

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Heart, Lung and Blood Institute (RO1-HL-07262) and from Tom and Shirley Gurley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, H.A., Dasi, L.P., Leo, HL. et al. Spatio-temporal Flow Analysis in Bileaflet Heart Valve Hinge Regions: Potential Analysis for Blood Element Damage. Ann Biomed Eng 35, 1333–1346 (2007). https://doi.org/10.1007/s10439-007-9302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9302-1

Keywords

Navigation