Skip to main content
Log in

Regulation of Antioxidants and Phase 2 Enzymes by Shear-Induced Reactive Oxygen Species in Endothelial Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Exposure of vascular endothelial cells (ECs) to steady laminar shear stress activates the NF-E2-related factor 2 (Nrf2) which binds to the antioxidant response element (ARE) and upregulates the expression of several genes. The onset of shear is known to increase the EC reactive oxygen species (ROS) production, and oxidative stress can activate the ARE. ARE-regulated genes include phase 2 enzymes, such as glutathione-S-transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), and antioxidants, such as glutathione reductase (GR), glutathione peroxidase (GPx) and catalase. We examined how shear stress affects the antioxidant/phase 2 enzyme activities and whether ROS mediate these effects. ROS production, measured by dichlorofluorescin fluorescence, depended on level and time of shear exposure and EC origin, and was inhibited by either an endothelial nitric oxide synthase (eNOS) inhibitor or a superoxide dismutase (SOD) mimetic and peroxynitrite (ONOO) scavenger. Shear stress (10 dynes/cm2, 16 h) significantly increased the NQO1 activity, did not change significantly the glutathione (GSH) content, and significantly decreased the GR, GPx, GST and catalase activities in human umbilical vein ECs. Either eNOS inhibition or superoxide radical (O •−2 )/ONOO scavenging differentially modulated the shear effects on enzyme activities suggesting that the intracellular redox status coordinates the shear-induced expression of cytoprotective genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

Abbreviations

EC:

endothelial cell

Nrf2:

NF-E2-related factor 2

ARE:

antioxidant response element

ROS:

reactive oxygen species

GSH:

glutathione

GST:

glutathione-S-transferase

NQO1:

NAD(P)H:quinone oxidoreductase 1

GR:

glutathione reductase

GPx:

glutathione peroxidase

eNOS:

endothelial nitric oxide synthase

SOD:

superoxide dismutase

ONOO :

peroxynitrite

O •−2 :

superoxide radical

VCAM-1:

vascular cell adhesion molecule-1

HO-1:

heme oxygenase-1

γ-GCS:

γ-glutamylcysteine synthetase

NO:

nitric oxide

HUVECs:

human umbilical vein ECs

H2O2 :

hydrogen peroxide

GSSG:

glutathione disulfide

O2 :

molecular oxygen

RNS:

reactive nitrogen species

l-NAME:

N G-nitro-l-arginine methyl ester

MnTBAP:

Mn(III) tetrakis(4-benzoic acid) porphyrin

HMVECs:

human microvascular ECs

DCFH-DA:

2′,7′-dichlorodihydrofluorescein diacetate

DCF:

dichlorofluorescin

NO 2 :

nitrogen dioxide radical

NAC:

N-acetylcysteine

PDTC:

pyrrolidine dithiocarbamate

FBS:

fetal bovine serum

CDNB:

1-chloro-2,3-dinitrobenzene

DCIP:

dichloroindophenol

HAECs:

human aortic ECs

Keap1:

Kelch-like ECH-associated protein 1

GS:

glutamyl synthase

LOOH:

lipid hydroperoxide

ONOOH:

peroxynitrous acid

OH :

hydroxyl radical

References

  1. Aebi H. Catalase in vitro. Methods Enzymol. 105:121–126, 1984

    PubMed  CAS  Google Scholar 

  2. Asahi M., J. Fujii, K. Suzuki, H. G. Seo, T. Kuzuya, M. Hori, M. Tada, S. Fujii, N. Taniguchi Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. J. Biol. Chem. 270(36):21035–21039, 1995

    Article  PubMed  CAS  Google Scholar 

  3. Benson A. M., M. J. Hunkeler, P. Talalay Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc. Natl. Acad. Sci. U.S.A. 77(9):5216–5220, 1980

    Article  PubMed  CAS  Google Scholar 

  4. Bloom D. A., A. K. Jaiswal Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J. Biol. Chem. 278(45):44675–44682, 2003

    Article  PubMed  CAS  Google Scholar 

  5. Brodsky S. V., S. Gao, H. Li, M. S. Goligorsky Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 283(5):H2130–2139, 2002

    PubMed  CAS  Google Scholar 

  6. Brooks A. R., P. I. Lelkes, G. M. Rubanyi Gene expression profiling of vascular endothelial cells exposed to fluid mechanical forces: relevance for focal susceptibility to atherosclerosis. Endothelium 11(1):45–57, 2004

    Article  PubMed  CAS  Google Scholar 

  7. Brown G. C. Reversible binding and inhibition of catalase by nitric oxide. Eur. J. Biochem. 232(1):188–191, 1995

    Article  PubMed  CAS  Google Scholar 

  8. Buckley B. J., Z. M. Marshall, A. R. Whorton Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium. Biochem. Biophys. Res. Commun. 307(4):973–979, 2003

    Article  PubMed  CAS  Google Scholar 

  9. Cao Z., D. Hardej, L. D. Trombetta, M. A. Trush, Y. Li Induction of cellular glutathione and glutathione S-transferase by 3H-1,2-dithiole-3-thione in rat aortic smooth muscle A10 cells: protection against acrolein-induced toxicity. Atherosclerosis 166(2):291–301, 2003

    Article  PubMed  CAS  Google Scholar 

  10. Cao Z., M. Tsang, H. Zhao, Y. Li Induction of endogenous antioxidants and phase 2 enzymes by alpha-lipoic acid in rat cardiac H9C2 cells: protection against oxidative injury. Biochem. Biophys. Res. Commun. 310(3):979–985, 2003

    Article  PubMed  CAS  Google Scholar 

  11. Chan B. P., W. M. Reichert, G. A. Truskey Effect of streptavidin-biotin on endothelial vasoregulation and leukocyte adhesion. Biomaterials 25(18):3951–3961, 2004

    Article  PubMed  CAS  Google Scholar 

  12. Chappell D. C., S. E. Varner, R. M. Nerem, R. M. Medford, R. W. Alexander Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ. Res. 82(5):532–539, 1998

    PubMed  CAS  Google Scholar 

  13. Chaudiere J., R. Ferrari-Iliou Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem. Toxicol. 37(9–10):949–962, 1999

    Article  PubMed  CAS  Google Scholar 

  14. Chen X. L., C. Kunsch Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr. Pharm. Des. 10(8):879–891, 2004

    Article  PubMed  CAS  Google Scholar 

  15. Chen X. L., S. E. Varner, A. S. Rao, J. Y. Grey, S. Thomas, C. K. Cook, M. A. Wasserman, R. M. Medford, A. K. Jaiswal, C. Kunsch Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J. Biol. Chem. 278(2):703–711, 2003

    Article  PubMed  CAS  Google Scholar 

  16. Chiu J. J., B. S. Wung, J. Y. Shyy, H. J. Hsieh, D. L. Wang Reactive oxygen species are involved in shear stress-induced intercellular adhesion molecule-1 expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 17(12):3570–3577, 1997

    PubMed  CAS  Google Scholar 

  17. Crow J. P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1(2):145–157, 1997

    Article  PubMed  CAS  Google Scholar 

  18. Cunningham K. S., A. I. Gotlieb The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest. 85(1):9–23, 2005

    PubMed  CAS  Google Scholar 

  19. Cybulsky M. I., K. Iiyama, H. Li, S. Zhu, M. Chen, M. Iiyama, V. Davis, J. C. Gutierrez-Ramos, P. W. Connelly, D. S. Milstone A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107(10):1255–1262, 2001

    PubMed  CAS  Google Scholar 

  20. De Keulenaer G. W., D. C. Chappell, N. Ishizaka, R. M. Nerem, R. W. Alexander, K. K. Griendling Oscillatory and steady laminar shear stress differentially affect human endothelial redox state. Role of a superoxide-producing NADH oxidase. Circ. Res. 82:1094–1101, 1998

    PubMed  Google Scholar 

  21. Dernbach E., C. Urbich, R. P. Brandes, W. K. Hofmann, A. M. Zeiher, S. Dimmeler Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood 104(12):3591–3597, 2004

    Article  PubMed  CAS  Google Scholar 

  22. Dhakshinamoorthy S., A. G. Porter Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J. Biol. Chem. 279(19):20096–20107, 2004

    Article  PubMed  CAS  Google Scholar 

  23. Dickinson D. A., D. R. Moellering, K. E. Iles, R. P. Patel, A. L. Levonen, A. Wigley, V. M. Darley-Usmar, H. J. Forman Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biol. Chem. 384(4):527–537, 2003

    Article  PubMed  CAS  Google Scholar 

  24. Flohe L., W. A. Gunzler Assays of glutathione peroxidase. Methods Enzymol. 105:114–121, 1984

    PubMed  CAS  Google Scholar 

  25. Frangos J. A., S. G. Eskin, L. V. McIntire, C. L. Ives Flow effects on prostacyclin production in cultured human endothelial cells. Science 227:1477–1479, 1985

    Article  PubMed  CAS  Google Scholar 

  26. Fujii T., R. Hamaoka, J. Fujii, N. Taniguchi Redox capacity of cells affects inactivation of glutathione reductase by nitrosative stress. Arch. Biochem. Biophys. 378(1):123–130, 2000

    Article  PubMed  CAS  Google Scholar 

  27. Garcia-Cardena G., J. Comander, K. R. Anderson, B. R. Blackman, M. A. Gimbrone Jr Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl. Acad. Sci. U.S.A. 98(8):4478–4485, 2001

    Article  PubMed  CAS  Google Scholar 

  28. Glebska J., W. H. Koppenol Peroxynitrite-mediated oxidation of dichlorodihydrofluorescein and dihydrorhodamine. Free Radic. Biol. Med. 35(6):676–682, 2003

    Article  PubMed  CAS  Google Scholar 

  29. Go Y. M., R. P. Patel, M. C. Maland, H. Park, J. S. Beckman, V. M. Darley-Usmar, H. Jo Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH(2)-terminal kinase. Am. J. Physiol. 277(4 Pt 2):H1647–H1653, 1999

    PubMed  CAS  Google Scholar 

  30. Gorlach A., R. P. Brandes, K. Nguyen, M. Amidi, F. Dehghani, R. Busse A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ. Res. 87(1):26–32, 2000

    PubMed  CAS  Google Scholar 

  31. Grumbach I. M., W. Chen, S. A. Mertens, D. G. Harrison A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. J. Mol. Cell. Cardiol. 39(4):595–603, 2005

    Article  PubMed  CAS  Google Scholar 

  32. Haddad J. J., H. L. Harb l-Gamma-Glutamyl-l-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol. Immunol. 42(9):987–1014, 2005

    Article  PubMed  CAS  Google Scholar 

  33. Haendeler J., V. Tischler, J. Hoffmann, A. M. Zeiher, S. Dimmeler Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression. FEBS Lett. 577(3):427–433, 2004

    Article  PubMed  CAS  Google Scholar 

  34. Harrison D. G., J. Widder, I. Grumbach, W. Chen, M. Weber, C. Searles Endothelial mechanotransduction, nitric oxide and vascular inflammation. J. Intern. Med. 259(4):351–363, 2006

    Article  PubMed  CAS  Google Scholar 

  35. Hayes J. D., J. U. Flanagan, I. R. Jowsey Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45:51–88, 2005

    Article  PubMed  CAS  Google Scholar 

  36. Hayes J. D., L. I. McLellan Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 31(4):273–300, 1999

    Article  PubMed  CAS  Google Scholar 

  37. Healy Z. R., N. H. Lee, X. Gao, M. B. Goldring, P. Talalay, T. W. Kensler, K. Konstantopoulos Divergent responses of chondrocytes and endothelial cells to shear stress: cross-talk among COX-2, the phase 2 response, and apoptosis. Proc. Natl. Acad. Sci. U.S.A. 102(39):14010–14015, 2005

    Article  PubMed  CAS  Google Scholar 

  38. Hojo Y., Y. Saito, T. Tanimoto, R. J. Hoefen, C. P. Baines, K. Yamamoto, J. Haendeler, R. Asmis, B. C. Berk Fluid shear stress attenuates hydrogen peroxide-induced c-Jun NH2-terminal kinase activation via a glutathione reductase-mediated mechanism. Circ. Res. 91(8):712–718, 2002

    Article  PubMed  CAS  Google Scholar 

  39. Hosoya T., A. Maruyama, M. I. Kang, Y. Kawatani, T. Shibata, K. Uchida, E. Warabi, N. Noguchi, K. Itoh, M. Yamamoto. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J. Biol. Chem. 280(29):27244–27250, 2005

    Article  PubMed  CAS  Google Scholar 

  40. Hsieh H. J., C. C. Cheng, S. T. Wu, J. J. Chiu, B. S. Wung, D. L. Wang Increase of reactive oxygen species (ROS) in endothelial cells by shear flow and involvement of ROS in shear-induced c-fos expression. J. Cell. Physiol. 175(2):156–162, 1998

    Article  PubMed  CAS  Google Scholar 

  41. Hwang J., M. H. Ing, A. Salazar, B. Lassegue, K. Griendling, M. Navab, A. Sevanian, T. K. Hsiai Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ. Res. 93(12):1225–1232, 2003

    Article  PubMed  CAS  Google Scholar 

  42. Inoue N., S. Ramasamy, T. Fukai, R. M. Nerem, D. G. Harrison Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ. Res. 79(1):32–37, 1996

    PubMed  CAS  Google Scholar 

  43. Ischiropoulos H., A. Gow, S. R. Thom, N. W. Kooy, J. A. Royall, J. P. Crow Detection of reactive nitrogen species using 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123. Methods Enzymol. 301:367–373, 1999

    Article  PubMed  CAS  Google Scholar 

  44. Itoh K., T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satoh, I. Hatayama, M. Yamamoto, Y. Nabeshima An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236(2):313–322, 1997

    Article  PubMed  CAS  Google Scholar 

  45. Itoh K., K. I. Tong, M. Yamamoto Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic. Biol. Med. 36(10):1208–1213, 2004

    Article  PubMed  CAS  Google Scholar 

  46. Jeyapaul J., A. K. Jaiswal Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of gamma-glutamylcysteine synthetase heavy subunit gene. Biochem. Pharmacol. 59(11):1433–1439, 2000

    Article  PubMed  CAS  Google Scholar 

  47. Kang K. W., S. H. Choi, S. G. Kim Peroxynitrite activates NF-E2-related factor 2/antioxidant response element through the pathway of phosphatidylinositol 3-kinase: the role of nitric oxide synthase in rat glutathione S-transferase A2 induction. Nitric Oxide 7(4):244–253, 2002

    Article  PubMed  CAS  Google Scholar 

  48. Kang K. W., S. J. Lee, S. G. Kim Molecular mechanism of nrf2 activation by oxidative stress. Antioxid. Redox Signal. 7(11–12):1664–1673, 2005

    Article  PubMed  CAS  Google Scholar 

  49. Korenaga R., J. Ando, K. Kosaki, M. Isshiki, Y. Takada, A. Kamiya Negative transcriptional regulation of the VCAM-1 gene by fluid shear stress in murine endothelial cells. Am. J. Physiol. 273(5 Pt 1):C1506–C1515, 1997

    PubMed  CAS  Google Scholar 

  50. McCormick S. M., S. G. Eskin, L. V. McIntire, C. L. Teng, C. M. Lu, C. G. Russell, K. K. Chittur DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 98(16):8955–8960, 2001

    Article  PubMed  CAS  Google Scholar 

  51. Mueller C. F., J. D. Widder, J. S. McNally, L. McCann, D. P. Jones, D. G. Harrison The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress. Circ. Res. 97(7):637–644, 2005

    Article  PubMed  CAS  Google Scholar 

  52. Ohura N., K. Yamamoto, S. Ichioka, T. Sokabe, H. Nakatsuka, A. Baba, M. Shibata, T. Nakatsuka, K. Harii, Y. Wada, T. Kohro, T. Kodama, J. Ando Global analysis of shear stress-responsive genes in vascular endothelial cells. J. Atheroscler. Thromb. 10(5):304–313, 2003

    PubMed  CAS  Google Scholar 

  53. Pompella A., A. Visvikis, A. Paolicchi, V. De Tata, A. F. Casini The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 66(8):1499–1503, 2003

    Article  PubMed  CAS  Google Scholar 

  54. Prestera T., P. Talalay Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proc. Natl. Acad. Sci. U.S.A. 92(19):8965–8969, 1995

    Article  PubMed  CAS  Google Scholar 

  55. Resnick N., M. A. Gimbrone Jr. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J. 9(10):874–882, 1995

    PubMed  CAS  Google Scholar 

  56. Ross D., J. K. Kepa, S. L. Winski, H. D. Beall, A. Anwar, D. Siegel NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem. Biol. Interact. 129(1–2):77–97, 2000

    Article  PubMed  CAS  Google Scholar 

  57. Rushmore T. H., M. R. Morton, C. B. Pickett The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 266(18):11632–11639, 1991

    PubMed  CAS  Google Scholar 

  58. Siegel D., D. L. Gustafson, D. L. Dehn, J. Y. Han, P. Boonchoong, L. J. Berliner, D. Ross NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol. Pharmacol. 65(5):1238–1247, 2004

    Article  PubMed  CAS  Google Scholar 

  59. Spitz D. R., L. W. Oberley An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal. Biochem. 179(1):8–18, 1989

    Article  PubMed  CAS  Google Scholar 

  60. Takeshita S., N. Inoue, T. Ueyama, S. Kawashima, M. Yokoyama Shear stress enhances glutathione peroxidase expression in endothelial cells. Biochem. Biophys. Res. Commun. 273(1):66–71, 2000

    Article  PubMed  CAS  Google Scholar 

  61. Topper J. N., J. Cai, D. Falb, M. A. J. Gimbrone Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl. Acad. Sci. U.S.A. 93(19):10417–10422, 1996

    Article  PubMed  CAS  Google Scholar 

  62. Wakabayashi N., A. T. Dinkova-Kostova, W. D. Holtzclaw, M. I. Kang, A. Kobayashi, M. Yamamoto, T. W. Kensler, P. Talalay Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc. Natl. Acad. Sci. U.S.A. 101(7):2040–2045, 2004

    Article  PubMed  CAS  Google Scholar 

  63. Wasserman S. M., F. Mehraban, L. G. Komuves, R. B. Yang, J. E. Tomlinson, Y. Zhang, F. Spriggs, J. N. Topper Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol. Genomics 12(1):13–23, 2002

    PubMed  CAS  Google Scholar 

  64. Wasserman S. M., J. N. Topper Adaptation of the endothelium to fluid flow: in vitro analyses of gene expression and in vivo implications. Vasc. Med. 9(1):35–45, 2004

    Article  PubMed  Google Scholar 

  65. Wheeler C. R., J. A. Salzman, N. M. Elsayed, S. T. Omaye, D. W. Korte Jr. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal. Biochem. 184(2):193–199, 1990

    Article  PubMed  CAS  Google Scholar 

  66. Wink D. A., K. M. Miranda, M. G. Espey, R. M. Pluta, S. J. Hewett, C. Colton, M. Vitek, M. Feelisch, M. B. Grisham Mechanisms of the antioxidant effects of nitric oxide. Antioxid. Redox Signal. 3(2):203–213, 2001

    Article  PubMed  CAS  Google Scholar 

  67. Wolin M. S. Interactions of oxidants with vascular signaling systems [Review]. Arterioscler. Thromb. Vasc. Biol. 20:1430–1442, 2000

    PubMed  CAS  Google Scholar 

  68. Yeh L. H., A. M. Kinsey, S. Chatterjee, B. R. Alevriadou Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression. J. Vasc. Res. 38(6):551–559, 2001

    Article  PubMed  CAS  Google Scholar 

  69. Yeh, L. H., Y. J. Park, R. J. Hansalia, I. S. Ahmed, S. S. Deshpande, P. J. Goldschmidt-Clermont, K. Irani, and B. R. Alevriadou. Shear-induced tyrosine phosphorylation in endothelial cells requires Rac1-dependent production of ROS. Am. J. Physiol. 276 (Cell Physiol. 45):C838–C847, 1999

    Google Scholar 

Download references

Acknowledgments

This study was supported by National Institutes of Health Grants HL67027 (B. R. Alevriadou) and HL71190 (Y. Li). We thank Mr. Guruguhan Meenakshisundaram for statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rita Alevriadou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, C.I., Zhu, H., Martin, S.F. et al. Regulation of Antioxidants and Phase 2 Enzymes by Shear-Induced Reactive Oxygen Species in Endothelial Cells. Ann Biomed Eng 35, 683–693 (2007). https://doi.org/10.1007/s10439-007-9279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9279-9

Keywords

Navigation