Skip to main content
Log in

A Mathematical Model of the Oral Glucose Tolerance Test Illustrating the Effects of the Incretins

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Despite important empirical findings, current models of the oral glucose tolerance test (OGTT) do not incorporate the essential contributions of the incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, to glucose-stimulated insulin secretion. In order to address this deficiency, a model was, therefore, developed in which the incretins, as well as a term reflecting net hepatic glucose balance, were included. Equations modeling the changes in incretins, hepatic glucose balance, insulin and glucose were used to simulate the responses to 50 and 100 g oral glucose loads under normal conditions. The model successfully captures main trends in mean data from the literature using a simple ‘lumped-parameter,’ single-compartment approach in which the majority of the parameters were matched to known clinical data. The accuracy of the model and its applicability to understanding fundamental mechanisms was further assessed using a variety of glycemic and insulinemic challenges beyond those which the model was originally created to encompass, including hyper- and hypoinsulinemia, changes in insulin sensitivity, and the insulin infusion-modified intravenous glucose tolerance test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

Abbreviations

GIP:

glucose-dependent insulinotropic peptide

GLP-1:

glucagon-like peptide-1

IMGU:

insulin-mediated glucose uptake

IVGTT:

intravenous glucose tolerance test

NIMGU:

non-insulin-mediated glucose uptake

OGTT:

oral glucose tolerance test.

References

  1. Ackerman, E., J. W. Rosevear, and W. F. Mcguckin. A mathematical model of the glucose tolerance test. Phys. Med. Biol. 9:203–216, 1964

    Article  Google Scholar 

  2. Antomonov Y. G., Gnilitskaya N. K., Kiforenko S. I., Mikulskaya I. A. (1968) Mathematical description of the blood sugar system. Math. Biosci. 2:435–450

    Article  CAS  Google Scholar 

  3. Arleth T., Andreassen S., Federici M. O., Benedetti M. M. (2000) A model of the endogenous glucose balance incorporating the characteristics of glucose transporters. Comput. Methods Programs Biomed. 62:219–234

    Article  PubMed  CAS  Google Scholar 

  4. Baron A. D., Brechtel G., Wallace P., Edelman S. V. (1988) Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am. J. Physiol. 255:E769–E774

    PubMed  CAS  Google Scholar 

  5. Basu A., Rizza R. A. (2001) Glucose effectiveness: measurement in diabetic and nondiabetic humans. Exp. Clin. Endocrinol. Diabetes 109(Suppl 2):S157–S165

    Article  PubMed  CAS  Google Scholar 

  6. Bergman R. N. Lilly lecture. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 38:1512–1527, 1989

    Google Scholar 

  7. Bergman R. N., Ader M. (2000) Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol. Metab. 11:351–356

    Article  PubMed  CAS  Google Scholar 

  8. Bolli G., De Feo P., Perriello G., De Cosmo S., Ventura M., Campbell P., Brunetti P., Gerich J. E. (1985) Role of hepatic autoregulation in defense against hypoglycemia in humans. J. Clin. Invest. 75:1623–1631

    PubMed  CAS  Google Scholar 

  9. Boston R. C., Moate P. J., Stefanovski D., Sumner A. E., Bergman R. N. (2005) AKA-Glucose: a program for kinetic and epidemiological analysis of frequently sampled intravenous glucose tolerance test data using database technology. Diabetes Technol. Ther. 7:298–307

    Article  PubMed  CAS  Google Scholar 

  10. Brandt A., Katschinski M., Arnold R., Polonsky K. S., Goke B., Byrne M. M. (2001) GLP-1-induced alterations in the glucose-stimulated insulin secretory dose-response curve. Am. J. Physiol. Endocrinol. Metab. 281: E242–E247

    PubMed  CAS  Google Scholar 

  11. Callegari T., Caumo A., Cobelli C. (2003) Bayesian two-compartment and classic single-compartment minimal models: comparison on insulin modified IVGTT and effect of experiment reduction. IEEE Trans. Biomed. Eng. 50:1301–1309

    Article  PubMed  Google Scholar 

  12. Cerasi E., Ependic S., Luft R. (1973) Dose-response relation between plasma-insulin and blood-glucose levels during oral glucose loads in prediabetic and diabetic subjects. Lancet 1:794–797

    Article  PubMed  CAS  Google Scholar 

  13. Charette, W. P., A. H. Kadish, and R. Sridhar. Modeling and control aspects of glucose homeostasis. Math. Biosci. 3 (Suppl. 1): 115−149, 1969

    Google Scholar 

  14. Cherrington A. D. (1997) Banting Lecture. Control of glucose uptake and release by the liver in vivo. Diabetes 48:1198–1214

    Article  Google Scholar 

  15. Chiasson J. L., el Achkar G. G., Ducros F., Bourque J., Maheux P. (1997) Glucose turnover and gluconeogenesis during pregnancy in women with and without insulin-dependent diabetes mellitus. Clin. Invest. Med. 20:140–151

    PubMed  CAS  Google Scholar 

  16. Connolly C. C., Adkins-Marshall B. A., Neal D. W., Pugh W., Jaspan J. B., Cherrington A. D. (1992) Relationship between decrements in glucose level and metabolic response to hypoglycemia in absence of counterregulatory hormones in the conscious dog. Diabetes 41:1308–1319

    Article  PubMed  CAS  Google Scholar 

  17. Creutzfeldt W. (2005) The [pre-] history of the incretin concept. Regul. Pept. 128:87–91

    Article  PubMed  CAS  Google Scholar 

  18. Dalla Man C., Caumo A., Basu R., Rizza R., Toffolo G., Cobelli C. (2004) Minimal model estimation of glucose absorption and insulin sensitivity from oral test: validation with a tracer method. Am. J. Physiol. Endocrinol. Metab. 287:E637–E643

    Article  PubMed  CAS  Google Scholar 

  19. de Herder W. W. (2004) Insulinoma. Neuroendocrinology 80(Suppl 1):20–22

    Article  PubMed  CAS  Google Scholar 

  20. DeFronzo R. A., Gunnarsson R., Bjorkman O., Olsson M., Wahren J. (1985) Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J. Clin. Invest. 76:149–155

    PubMed  CAS  Google Scholar 

  21. Drucker D. J. (2003) Therapeutic potential of dipeptidyl peptidase IV inhibitors for the treatment of type 2 diabetes. Expert. Opin. Investig. Drugs 12:87–100

    Article  PubMed  CAS  Google Scholar 

  22. Dube P. E., Brubaker P. L. (2004) Nutrient, neural and endocrine control of glucagon-like peptide secretion. Horm. Metab. Res. 36:755–760

    Article  PubMed  CAS  Google Scholar 

  23. Duckworth W. C. (1988) Insulin degradation: mechanisms, products, and significance. Endocr. Rev. 9:319–345

    PubMed  CAS  Google Scholar 

  24. Fehse F., Trautmann M., Holst J. J., Halseth A. E., Nanayakkara N., Nielsen L. L., Fineman M. S., Kim D. D., Nauck M. A. (2005) Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab. 90:5991–5997

    Article  PubMed  CAS  Google Scholar 

  25. Ferrannini E., Bjorkman O., Reichard G. A., Jr., Pilo A., Olsson M., Wahren J., DeFronzo R. A. (1985) The disposal of an oral glucose load in healthy subjects. A quantitative study Diabetes 34:580–588

    Article  PubMed  CAS  Google Scholar 

  26. Ferrannini E., Simonson D. C., Katz L. D., Reichard G., Jr., Bevilacqua S., Barrett E. J., Olsson M., DeFronzo R. A. (1988) The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 37:79–85

    Article  PubMed  CAS  Google Scholar 

  27. Ferrannini E., Smith J. D., Cobelli C., Toffolo G., Pilo A., DeFronzo R. A. (1985) Effect of insulin on the distribution and disposition of glucose in man. J. Clin. Invest. 76:357–364

    PubMed  CAS  Google Scholar 

  28. Forbath N., and G. Hetenyi, Jr. Glucose dynamics in normal subjects and diabetic patients before and after a glucose load. Diabetes 15:778–789, 1966

    PubMed  CAS  Google Scholar 

  29. Gatewood L. C., Ackerman E., Rosevear J. W., Molnar G. D., Burns T. W. (1968) Tests of a mathematical model of the blood-glucose regulatory system. Comput. Biomed. Res. 2:1–14

    Article  PubMed  CAS  Google Scholar 

  30. Giacca A., Groenewoud Y., Tsui E., McClean P., Zinman B. (1998) Glucose production, utilization, and cycling in response to moderate exercise in obese subjects with type 2 diabetes and mild hyperglycemia. Diabetes 47:1763–1770

    Article  PubMed  CAS  Google Scholar 

  31. Hayford J. T., Weydert J. A., Thompson R. G. (1983) Validity of urine glucose measurements for estimating plasma glucose concentration. Diabetes Care 6:40–44

    Article  PubMed  CAS  Google Scholar 

  32. Hetenyi G., Jr., Pagurek B., Fluker G., Anthony J., Popescu I., Norwich K. H. (1977) Computer controlled glucoregulation in the diabetic dog. Ann. Biomed. Eng. 5:61–69

    Article  PubMed  CAS  Google Scholar 

  33. Kahn S. E., Prigeon R. L., McCulloch D. K., Boyko E. J., Bergman R. N., Schwartz M. W., Neifing J. L., Ward W. K., Beard J. C., Palmer J. P. (1993) Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function Diabetes 42:1663–1672

    Article  PubMed  CAS  Google Scholar 

  34. Kleinbaum J., Shamoon H. (1982) Selective counterregulatory hormone responses after oral glucose in man. J. Clin. Endocrinol. Metab. 55:787–790

    Article  PubMed  CAS  Google Scholar 

  35. Kolterman O. G., Gray R. S., Griffin J., Burstein P., Insel J., Scarlett J. A., Olefsky J. M. (1981) Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J. Clin. Invest. 68:957–969

    PubMed  CAS  Google Scholar 

  36. Lewis G. F., Steiner G., Polonsky K. S., Weller B., Zinman B. (1994) A new method for comparing portal and peripheral venous insulin delivery in humans: tolbutamide versus insulin infusion. J. Clin. Endocrinol. Metab. 79:66–70

    Article  PubMed  CAS  Google Scholar 

  37. Mari A., Pacini G., Murphy E., Ludvik B., Nolan J. J. (2001) A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 24:539–548

    Article  PubMed  CAS  Google Scholar 

  38. Mayer-Davis E. J., D’Agostino R., Jr., Karter A. J., Haffner S. M., Rewers M. J., Saad M., Bergman R. N. (1998) Intensity and amount of physical activity in relation to insulin sensitivity: the Insulin Resistance Atherosclerosis Study. J. Am. med. Assoc. 279:669–674

    Article  CAS  Google Scholar 

  39. Meier J. J., Nauck M. A., Kranz D., Holst J. J., Deacon C. F., Gaeckler D., Schmidt W. E., Gallwitz B. (2004) Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53:654–662

    Article  PubMed  CAS  Google Scholar 

  40. Miedema K. (2003) Laboratory tests in diagnosis and management of diabetes mellitus. Practical considerations. Clin. Chem. Lab. Med. 41:1259–1265

    Article  PubMed  CAS  Google Scholar 

  41. Moore M. C., Cherrington A. D., Wasserman D. H. (2003) Regulation of hepatic and peripheral glucose disposal. Best. Pract. Res. Clin. Endocrinol. Metab. 17:343–364

    Article  PubMed  CAS  Google Scholar 

  42. Nauck M. A., Homberger E., Siegel E. G., Allen R. C., Eaton R. P., Ebert R., Creutzfeldt W. (1986) Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 63:492–498

    PubMed  CAS  Google Scholar 

  43. Norwich, K. H. Molecular Dynamics in Biosystems: The Kinetics of Tracers in Intact Organisms. Oxford: Pergamon Press, 326 pp, 1977

    Google Scholar 

  44. Perley M. J., Kipnis D. M. (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J. Clin. Invest. 46:1954–1962

    Article  PubMed  CAS  Google Scholar 

  45. Potteiger J. A., Jacobsen D. J., Donnelly J. E., Hill J. O. (2003) Glucose and insulin responses following 16 months of exercise training in overweight adults: the Midwest Exercise Trial. Metabolism 52:1175–1181

    Article  PubMed  CAS  Google Scholar 

  46. Quon M. J., Cochran C., Taylor S. I., Eastman R. C. (1994) Direct comparison of standard and insulin modified protocols for minimal model estimation of insulin sensitivity in normal subjects. Diabetes Res. 25:139–149

    PubMed  CAS  Google Scholar 

  47. Radziuk J., Norwich K. H., Vranic M. (1978) Experimental validation of measurements of glucose turnover in nonsteady state. Am. J. Physiol. Endocrinol. Metab. 234: E84–E93

    CAS  Google Scholar 

  48. Rice F. O., Herzfeld K. F. (1934) The thermal decomposition of organic compounds from the standpoint of free radicals. VI. The mechanism of some chain reactions. J. Am.Chem. Soc. 56:284–289

    Article  CAS  Google Scholar 

  49. Salzsieder, E., G. Albrecht, U. Fischer, and E. J. Freyse. Kinetic modeling of the glucoregulatory system to improve insulin therapy. IEEE. Trans. Biomed. Eng. 32:846–855, 1985

    Article  PubMed  CAS  Google Scholar 

  50. Schirra J., Katschinski M., Weidmann C., Schafer T., Wank U., Arnold R., Goke B. (1996) Gastric emptying and release of incretin hormones after glucose ingestion in humans. J. Clin. Invest. 97:92–103

    Article  PubMed  CAS  Google Scholar 

  51. Sluiter W. J., Erkelens D. W., Reitsma W. D., Doorenbos H. (1976) Glucose tolerance and insulin release, a mathematical approach I. Assay of the beta-cell response after oral glucose loading. Diabetes 25:241–244

    Article  PubMed  CAS  Google Scholar 

  52. Sluiter W. J., Erkelens D. W., Terpstra P., Reitsma W. D., Doorenbos H. (1976) Glucose tolerance and insulin release, a mathematical approach. II. Approximation of the peripheral insulin resistance after oral glucose loading. Diabetes 25:245–249

    Article  PubMed  CAS  Google Scholar 

  53. Thomaseth K., Kautzky-Willer A., Ludvik B., Prager R., Pacini G. (1996) Integrated mathematical model to assess beta-cell activity during the oral glucose test. Am. J. Physiol. 270:E522–E531

    PubMed  CAS  Google Scholar 

  54. Vilsboll T., Krarup T., Madsbad S., Holst J. J. (2003) Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Reg. Pep. 114:115–121

    Article  CAS  Google Scholar 

  55. Wright E. M., Martin M. G., Turk E. (2003) Intestinal absorption in health and disease–sugars. Best. Pract. Res. Clin. Gastroenterol. 17:943–956

    Article  PubMed  CAS  Google Scholar 

  56. Yang Y. J., Hope I. D., Ader M., Bergman R. N. (1994) Importance of transcapillary insulin transport to dynamics of insulin action after intravenous glucose. Am. J. Physiol. 266:E17–E25

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. J. Radziuk (University of Ottawa) for helpful discussions. This work was supported by an operating grant from the Canadian Diabetes Association (to PLB), and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (to KHN). ELO was supported by a Canadian Institutes of Health Research Doctoral Award; LMD by a Banting and Best Diabetes Centre, University of Toronto, Graduate Studentship; and PLB by the Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth H. Norwich.

Appendices

Appendix A

Determination of k 1 and k 2 using the Ratio NIMGU:IMGU

Let p = NIMGU/IMGU, the ratio of non-insulin mediated to insulin-mediated glucose uptake = 2 under basal conditions.4,27 Then, referring to Eq. (6), for basal steady state:

$$ p\; = \;k_1 {G}_B ^{1.3} /k_2 {I}_{B} $$

Setting dG/dt = dI/dt = 0 in Eq. (6), and setting Ra GutG  = 0, we obtain:

$$ {Hepbal}_{{GB}} /V\; = \;k_1 {G}_{B} ^{1.3} \; + \;k_2 {I}_{B} $$

Then k 1 and k 2 can be obtained by solving the latter two equations:

$$ k_1 = \frac{p} {{p + 1}}\frac{{{Hepbal}_{{GB}} }} {{{G}_{B}^{{1}{.3}} V}} $$
$$ k_2 = \frac{1} {{p + 1}}\frac{{{Hepbal}_{{GB}} }} {{{I}_{B} V}} $$

Appendix B

Determination of the Fractional Turnover Rate of Glucose (K) Following an Intravenous Bolus Injection of Radioactive Tracer

With reference to Eq. (6), the steady state rate of disappearance of unlabeled glucose or tracee is equal to k1 G B 1.3  + k 2 I B . Assuming steady state conditions for tracee, the rate of disappearance of labeled glucose or tracer (G*) is equal to the rate of disappearance of tracee (G) multiplied by the specific activity of the tracer (G*/G).43 That is,

$$ \frac{{d{G}^{*}(t)}} {{dt}} = - \frac{{{G}^{*}(t)}} {{{G}_{B} }}\left( {k_1 {G}_{B}^{{1}{.3}} + k_2 {I}_{B} } \right) = - \left( {k_1 {G}_{B}^{{\hbox{0}}{\hbox{.3}}} + k_2 {I}_{B} /{G}_{B} } \right){G}^{*}(t)$$

Since \( \left( {k_1 {G}_{B}^{{\hbox{0}}{\hbox{.3}}} + k_2 {I}_{B} /{G}_{B} } \right)\) = 0.015 min−1, when evaluated using the values for k 1, k 2, G B and I B (Tables 1, 2), the expected slope of the straight line obtained by plotting ln G*(t) against t is equal to 0.015 min−1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brubaker, P.L., Ohayon, E.L., D’Alessandro, L.M. et al. A Mathematical Model of the Oral Glucose Tolerance Test Illustrating the Effects of the Incretins. Ann Biomed Eng 35, 1286–1300 (2007). https://doi.org/10.1007/s10439-007-9274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9274-1

Keywords

Navigation