Skip to main content
Log in

A Mechanical Study of Rigid Plate Configurations for Sternal Fixation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Rigid metal plates are a promising alternative to wires for reapproximating the sternum after open-heart surgery due to their potential ability to reduce motion at the wound site and thereby reduce the likelihood of post-operative healing complications. Despite initial clinical success, the use of plates has been limited, in part, by insufficient knowledge about their most effective placement. This study compares the ability of five plate configurations to provide stable closure by limiting sternal separation. Commercially available x-shaped and box-shaped plates were used and combinations of parameters (plate type, location, and number of plates) were investigated in vitro. Lateral distraction tests using controlled, uniform loading were conducted on 15 synthetic sterna and the distractions between separated sternum halves were measured at seven locations. Distractions at the xiphoid, a critical region clinically, varied widely from 0.03 ± 0.53 mm to 4.24 ± 1.26 mm depending on all three plate parameters. Of the configurations tested, three x-shaped plates and one box-shaped plate resisted sternal separation most effectively. These results provide the first comparison of plate configurations for stabilizing a sternotomy. However, basic mechanical analyses indicate that sternal loading in vivo is non-uniform; future studies will need to accurately quantify in vivo loading to improve in vitro test methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

Abbreviations

M:

manubrium (graphite marker measurement location)

MS1:

midsternum one (graphite marker measurement location)

MS2:

midsternum two (graphite marker measurement location)

MS3:

midsternum three (graphite marker measurement location)

MS4:

midsternum four (graphite marker measurement location)

MS5:

midsternum five (graphite marker measurement location)

X:

xiphoid (graphite marker measurement location)

7S:

seven simple straight wires, used in this study as the standard wire configuration

3X:

three “X”-shaped plates spaced evenly down the sternum

3XO:

similar to 3X only the third plate was placed towards the xiphoid

4X:

four “X”-shaped plates spaced evenly down the sternum

2X-1Box:

similar to 3XO only the third “X”-shaped plate was replaced with a Box-plate

3X-1Box:

similar to 4X only the fourth “X”-shaped plate was replaced with a Box-plate

References

  1. A.H.A. Heart disease and stroke statistics - 2005 update. American Heart Association, Dallas, TX, 2005

  2. Augat P., Burger J., Schorlemmer S., Henke T., Peraus M., Claes L. 2003 Shear movement at the fracture site delays healing in a diaphyseal fracture model. J. Orthop. Res. 21:1011–1017

    Article  PubMed  Google Scholar 

  3. Baugmart, F. W., and S. M. Perren. Rationale for the design and use of pure titanium internal fixation plates. In: Clinical and laboratory performance of bone plates, edited by J. P. Harvey, and R. F. Games. Philadelphia: American Society for Testing and Materials, 1994, pp. 25–33

  4. Claes L., Eckert-Hubner K., Augat P. 2002 The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J. Orthop. Res. 20:1099–1105

    Article  PubMed  Google Scholar 

  5. Claes L., Wilke H.-J., Augat P. 1995 Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin. Biomech. 10:227–234

    Article  Google Scholar 

  6. Cohen D. J., Griffin L. V. 2002 A biomechanical comparison of three sternotomy closure techniques. Ann. Thorac. Surg. 73:563–568

    Article  PubMed  Google Scholar 

  7. Cooper P. R., Cohen A., Rosiello A., Koslow M. 1988 Posterior stabilization of cervical spine fractures and subluxations using plates and screws. Neurosurgery 23:300–306

    Article  PubMed  CAS  Google Scholar 

  8. Dasika U. K., Trumble D. R., Magovern J. A. 2003 Lower sternal reinforcement improves the stability of sternal closure. Ann. Thorac. Surg. 75:1618–1621

    Article  PubMed  Google Scholar 

  9. El Oakley R. M., Wright J. E. 1996 Postoperative mediastinitis: Classification and management. Ann. Thorac. Surg. 61:1030–1036

    Article  PubMed  CAS  Google Scholar 

  10. Gottlieb L. J., Pielet R. W., Karp R. B., Krieger L. M., Smith D. J. Jr., Deeb G. M. 1994 Rigid internal fixation of the sternum in postoperative mediastinitis. Arch. Surg. 129:489–493

    PubMed  CAS  Google Scholar 

  11. Hale, J. E., D. D. Anderson, and G. A. Johnson. A polyurethane foam model for characterizing suture pull-through properties in bone. In 23rd Annual Meeting of the American Society of Biomechanics. Pittsburgh, Pennsylvania, 1999

  12. Hendrickson S. C., Koger K. E., Morea C. J., Aponte R. L., Smith P. K., Levin L. S. 1996 Sternal plating for the treatment of sternal nonunion. Ann. Thorac. Surg. 62:512–518

    Article  PubMed  CAS  Google Scholar 

  13. Losanoff J. E., Collier A. D., Wagner-Mann C. C., Richman B. W., Huff H., Hsieh F., Diaz-Arias A., Jones J. W. 2004 Biomechanical comparison of median sternotomy closures. Ann. Thorac. Surg. 77:203–209

    Article  PubMed  Google Scholar 

  14. Martin R. B. 1991 Determinants of the mechanical properties of bones. J. Biomech. 24:79–88

    Article  PubMed  Google Scholar 

  15. McGregor W. E., Trumble D. R., Magovern J. A. 1999 Mechanical analysis of midline sternotomy wound closure. J. Thorac. Cardiovasc. Surg. 117:1144–1150

    Article  PubMed  CAS  Google Scholar 

  16. Ouellette, A., S. Kato, K. Nakamura, L. L. Latta, and W. E. Burkhalter. Mechanical evaluation of internal and external fixation for metacarpal fractures. In: Clinical and laboratory performance of bone plates, edited by J. P. Harvey, and R. F. Games. Philadelphia: American Society for Testing and Materials, pp. 95–102, 1994

  17. Ozaki W., Buchman S. R., Iannettoni M. D., Frankenburg E. P. 1998 Biomechanical study of sternal closure using rigid fixation techniques in human cadavers. Ann. Thorac. Surg. 65:1660–1665

    Article  PubMed  CAS  Google Scholar 

  18. Pai S., Gunja N. J., Dupak E. L., McMahon N. L., Lalikos J., Dunn R. M., Roth T., Francalancia N., Pins G. D., Billiar K. L. 2005 An in vitro comparison of wire and plate fixation for midline sternotomies. Ann. Thorac. Surg. 80:962–968

    Article  PubMed  Google Scholar 

  19. Sargent L. A., Seyfer A. E., Hollinger J., Hinson R. M., Graeber G. M. 1991 The healing sternum: A comparison of osseous healing with wire versus rigid fixation. Ann. Thorac. Surg. 52:490–494

    Article  PubMed  CAS  Google Scholar 

  20. Smoot E. C., Weiman D. 1998 Paramedian sternal bone plate reinforcement and wiring for difficult sternotomy wounds. Ann. Plast. Surg. 41:464–467

    Article  PubMed  CAS  Google Scholar 

  21. Song D. H., Lohman R. F., Renucci J. D., Jeevanandam V., Raman J. 2004 Primary sternal plating in high-risk patients prevents mediastinitis. Eur. J. Cardiothorac. Surg. 26:367–372

    Article  PubMed  Google Scholar 

  22. Stahle E., Tammelin A., Bergstrom R., Hambreus A., Nystrom S. O., Hansson H. E. 1997 Sternal wound complications–incidence, microbiology and risk factors. Eur. J. Cardiothorac. Surg. 11:1146–1153

    Article  PubMed  CAS  Google Scholar 

  23. Szivek J. A., Thomas M., Benjamin J. B. 1993 Characterization of a synthetic foam as a model for human cancellous bone. J. Appl. Biomater. 4:269–272

    Article  PubMed  CAS  Google Scholar 

  24. Trumble D. R., McGregor W. E., Magovern J. A. 2002 Validation of a bone analog model for studies of sternal closure. Ann. Thorac. Surg. 74:739–744

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shon Steger of W. Lorenz Surgical, Timothy Roth of the University of Massachusetts Medical Center, and Oljeta Bida and Helena Zec of Worcester Polytechnic Institute for their advice and assistance. We would also like to thank Jim Greene of JMR Systems Inc. for digitizing the surface of the sternal model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen L. Billiar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, S., Gunja, N.J., Dupak, E.L. et al. A Mechanical Study of Rigid Plate Configurations for Sternal Fixation. Ann Biomed Eng 35, 808–816 (2007). https://doi.org/10.1007/s10439-007-9272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9272-3

Keywords

Navigation