Skip to main content
Log in

Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Objective

To use artificial neural networks (ANNs) on uterine electromyography (EMG) data to classify term/preterm labor/non-labor pregnant patients.

Materials And Methods

A total of 134 term and 51 preterm women (all ultimately delivered spontaneously) were included. Uterine EMG was measured trans-abdominally using surface electrodes. “Bursts” of elevated uterine EMG, corresponding to uterine contractions, were quantified by finding the means and/or standard deviations of the power spectrum (PS) peak frequency, burst duration, number of bursts per unit time, and total burst activity. Measurement-to-delivery (MTD) time was noted for each patient. Term and preterm patient groups were sub-divided, resulting in the following categories: [term-laboring (TL): n = 75; preterm-laboring (PTL): n = 13] and [term-non-laboring (TN): n = 59; preterm-non-laboring (PTN): n = 38], with labor assessed using clinical determinations. ANN was then used on the calculated uterine EMG data to algorithmically and objectively classify patients into labor and non-labor. The percent of correctly categorized patients was found. Comparison between ANN-sorted groups was then performed using Student’s t test (with < 0.05 significant).

Results

In total, 59/75 (79%) of TL patients, 12/13 (92%) of PTL patients, 51/59 (86%) of TN patients, and 27/38 (71%) of PTN patients were correctly classified.

Conclusion

ANNs, used with uterine EMG data, can effectively classify term/preterm labor/non-labor patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. Buhimschi C., Boyle M. B., Saade G. R., Garfield R. E. (1998) Uterine activity during pregnancy and labor assessed by simultaneous recordings from the myometrium and abdominal surface in the rat. Am. J. Obstet. Gynecol. 178:811–822

    Article  PubMed  CAS  Google Scholar 

  2. Devedeux D., Marque C., Mansour S., Germain G., Duchene J. (1993) Uterine electromyography: A critical review. Am. J. Obstet. Gynecol. 169:1636–1653

    PubMed  CAS  Google Scholar 

  3. Diaz C., Conde J. E., Estevez D., Olivero S. J. P., Trujillo J. P. P. (2003) Application of multivariate analysis and artificial neural networks for the differentiation of red wines from the Canary Islands according to the island of origin. J. Agric. Food Chem. 51(15):4303–4307

    Article  PubMed  CAS  Google Scholar 

  4. Fausett, L. Fundamentals of Neural Networks, Prentice-Hall, 1994

  5. Figueroa J. P., Honnebier M. B., Jenkins S., Nathanielsz P. W. (1990) Alteration of 24-hour rhythms in the myometrial activity in the chronically catheterized pregnant rhesus monkey after 6-hours shift in the light-dark cycle. Am. J. Obstet. Gynecol. 163:648–654

    PubMed  CAS  Google Scholar 

  6. Garfield, R. E., K. Chwalisz, L. Shi, G. Olson , and G. R. Saade, Instrumentation for the diagnosis of term and preterm labour. J. Perinat. Med. 26:413–436, 1998 (Review)

  7. Garfield R. E., Maner W. L., MacKay L. B., Schlembach D., Saade G. R. (2005) Comparing uterine electromyography activity of antepartum patients versus term labor patients. Am. J. Obstet. Gynecol. 193(1):23–29

    Article  PubMed  Google Scholar 

  8. Garfield, R. E, W. L. Maner, H. Maul, and G. R. Saade. Use of uterine EMG and cervical LIF in monitoring pregnant patients. BJOG 112(Suppl 1):103–108, 2005

  9. Garfield R. E., Saade G., Buhimschi C., Buhimschi I., Shi L., Shi S. Q., Chwalisz K. (1998) Control and assessment of the uterus and cervix during pregnancy and labour. Hum. Reprod. Update 4:673–695

    Article  PubMed  CAS  Google Scholar 

  10. Glass J. O., Reddick W. E., Goloubeva O., Yo V., Steen R. G. (2000) Hybrid artificial neural network segmentation of precise and accurate inversion recovery (PAIR) images from normal human brain. Magn. Reson. Imaging 18(10):1245–1253

    Article  PubMed  CAS  Google Scholar 

  11. Gurney, K. An Introduction to Neural Networks, UCL Press, 1997

  12. Haykin, S. (1999) Neural Networks 2nd ed. Prentice Hall, ISBN 0 13 273350 1

  13. Iams J. D. (2003) Prediction and early detection of pre-term labor. Obstet. Gynecol. 101:402–412

    Article  PubMed  Google Scholar 

  14. Karlsson J. S., Gerdle B., Akay M. (2001) Analyzing surface myoelectric signals recorded during isokinetic contractions. IEEE Eng. Med. Biol. Mag. 20(6):97–105

    Article  PubMed  CAS  Google Scholar 

  15. Kohonen, T. “Self organizing maps”, In: Springer Series in Information Sciences, edited by T. Kohonen, T. S. Huang, and M. R. Schroeder. Heidelberg: Springer, 2005

  16. Kuriyama H., Csapo A. (1967) A study of the parturient uterus with the microelectrode technique. Endocrinology 80:748–753

    Article  Google Scholar 

  17. Lammers W. J.,Stephen B.,Hamid R.,Harron D. W. (1999) The effects of oxytocin on the pattern of electrical propagation in the isolated pregnant uterus of the rat. Pflugers Arch. 437(3):363–370

    Article  PubMed  CAS  Google Scholar 

  18. Lawrence J. (1991) Data preparation for a neural network. AI Expert. 11:34–41

    Google Scholar 

  19. Linhart J., Olson G., Goodrum L., Rowe T., Saade G., Hankins G. (1990) Preterm labor at 32 to 34 weeks’ gestation: effect of a policy of expectant management on length of gestation. Am. J. Obstet. Gynecol. 178:S179

    Google Scholar 

  20. Lockwood CJ., Kuczynski E. (2001) Risk stratification and pathological mechanisms in preterm delivery. Paediatr. Perinat. Epidemiol.. 15 (Suppl 2):78–89

    Article  PubMed  Google Scholar 

  21. MacIsaac D. T., Parker P. A., Scott R. N., Englehart K. B., Duffley C. (2001) Influences of dynamic factors on myoelectric parameters. IEEE Eng. Med. Biol. Mag.. 20(6):82–89

    Article  PubMed  CAS  Google Scholar 

  22. Maner W. L., Garfield R. E., Maul H., Olson G., Saade G. (2003) Predicting term and preterm delivery with trans-abdominal uterine electromyography. Obstet. Gynecol. 101(6):1254–1260

    Article  PubMed  Google Scholar 

  23. Maner W. L., MacKay L. B., Saade G. R., Garfield R. E. (2006) Characterization of abdominally acquired uterine electrical signals in humans, using a non-linear analytic method .Med. Biol. Eng. Comput. 44(1–2):117–123

    Article  PubMed  Google Scholar 

  24. Marshall J.M. (1962) Regulation of the activity in uterine muscle. Physiol. Rev. 42:213–227

    Google Scholar 

  25. Maul H., Maner W. L., Olson G., Saade G. R., Garfield R. E. (2004) Non-invasive trans-abdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J. Matern. Fetal Neonatal. Med. 15(5):297–301

    Article  PubMed  CAS  Google Scholar 

  26. Nagarajan R., Eswaran H., Wilson J. D., Murphy P., Lowery C., Preissl H. (2003) Analysis of uterine contractions: a dynamical approach. J. Matern. Fetal Neonatal. Med. 14(1):8–21

    PubMed  CAS  Google Scholar 

  27. U.S. Preventive Services Task Force. Guide to Clinical Preventive Services: An Assessment of the Effectiveness of 169 Interventions. Williams & Wilkins, Baltimore, 1989

  28. Wolfs G. M. J. A. (1979) Van Leeuwen. Electromyographic observations on the human uterus during labor. Acta Obstet. Gynecol. Scand. Suppl. 90:1–61

    Article  PubMed  CAS  Google Scholar 

  29. Wyns B., Sette S., Boullart L., Baeten D., Hoffman I. E., De Keyser F. (2004) Prediction of diagnosis in patients with early arthritis using a combined Kohonen mapping and instance-based evaluation criterion. Artif. Intell. Med. 31(1):45–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowlegment

We would like to thank NIH (R01-HD037480) for the funding to complete this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Garfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maner, W.L., Garfield, R.E. Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Ann Biomed Eng 35, 465–473 (2007). https://doi.org/10.1007/s10439-006-9248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9248-8

Keywords

Navigation