Skip to main content
Log in

Vasoactivity of Blood Vessels Using a Novel Isovolumic Myograph

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The vasoactivity of blood vessel is impaired by cardiovascular disease. The ex-vivo measurements of vasoactivity (wire and pressure myographs) have some inherent difficulties in the characterization of pharmacodynamics and biomechanics. Here, we introduce a novel isovolumic myograph which allows simultaneous measurement of both dynamic pressure and dimensional changes during vasoconstriction or vasodilation. The principle of the isovolumic myograph is based on the utility of a hydraulically closed system with low compliance such that contraction against an incompressible fluid increases the pressure with the closed system while dilation decreases it. We demonstrate the sensitivity and utility of the new technique by the response of elastic (carotid), muscular (femoral) arteries, and femoral veins. The results show characteristic dynamic pressure response for each vessel type. Furthermore, our results show a Hill-type equation for the tension–velocity relation for smooth muscles as well as characteristic curves for each contraction. These novel findings for blood vessels will advance our knowledge of endothelium and vascular smooth muscle mechanics and pharmacodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. Bevan J. A., and J. V. Osher. (1972). A direct method for recording tension changes in the wall of small blood vessel in vitro. Agents Actions 2: 257–260

    CAS  Google Scholar 

  2. Davis M. J., and R. W. Gore. (1989). Length-tension relationship of vascular smooth muscle in single arterioles. Am. J. Physiol. 256(3 Pt 2):H630–640

    PubMed  CAS  Google Scholar 

  3. Davis M. J., and J. Davidson. (2002). Force-velocity relationship of myogenically active arterioles. Am. J. Physiol. Heart Circ. Physiol. 282(1):H165–174

    PubMed  CAS  Google Scholar 

  4. Dunn W. R., G. C. Wellman, and J. A. Bevan. (1994). Enhanced resistance artery sensitivity to agonists under isobaric compared with isometric conditions. Am. J. Physiol. 266: H147–H155

    PubMed  CAS  Google Scholar 

  5. Elsner D., A. Muntze, Kromer E. P., Riegger G. A. (1991) Systemic vasoconstriction induced by inhibition of nitric oxide synthesis is attenuated in conscious dogs with heart failure. Cardiovasc. Res. 25:438–440

    Article  PubMed  CAS  Google Scholar 

  6. Falcone J. C., Meininger G. A. (1999) Endothelin mediates a component of the enhanced myogenic responsiveness of arterioles from hypertensive rats. Microcirculation 6: 305–313

    Article  PubMed  CAS  Google Scholar 

  7. Falloon B. J., Stephens N., Tulip J. R., Heagerty A. M. (1995). Comparison of small artery sensitivity and morphology in pressurized and wire-mounted preparations. Am. J. Physiol. 268: H670-H678

    PubMed  CAS  Google Scholar 

  8. Frielingsdorf J., Kaufmann P., Seiler C., Vassalli G., Suter T., Hess O. M. (1996) Abnormal coronary vasomotion in hypertension: role of coronary artery disease. J. Am. Coll. Cardiol. 28: 935–941

    Article  PubMed  CAS  Google Scholar 

  9. Fung Y. C. (1993) Biomechanics: Mechanical Properties of Living Tissue, 2nd ed. New York, Spinger-Verlag 481–485

    Google Scholar 

  10. Gonzales R. J., Walker B. R., Kanagy N. L. (2001) 17beta-estradiol increases nitric oxide-dependent dilation in rat pulmonary arteries and thoracic aorta. Am. J. Physiol. Lung Cell Mol. Physiol. 280:L555–L564

    PubMed  CAS  Google Scholar 

  11. Hainsworth R., Sofola O. A., Knill A. J., Drinkhill M. J. (2003) Influence of dietary salt intake on the response of isolated perfused mesenteric veins of the dog to vasoactive agents. Am. J. Hypertens. 16:6–10

    Article  PubMed  CAS  Google Scholar 

  12. Halpern W., Osol G., Coy G. S. (1984) Mechanical behavior of pressurized in vitro prearteriolar vessels determined with a video system. Ann. Biomed. Eng. 12: 463–479

    Article  PubMed  CAS  Google Scholar 

  13. Huang A., Koller A. (1997) Endothelin and prostaglandin H2 enhance arteriolar myogenic tone in hypertension. Hypertension 30:1210–1215

    PubMed  CAS  Google Scholar 

  14. Hughes J. M., Bund S. J. (2002) Arterial myogenic properties of the spontaneously hypertensive rat. Exp. Physiol. 87: 527–534

    Article  PubMed  Google Scholar 

  15. Inazu M., Sakai Y., Homma I. (1991) Contractile responses and calcium mobilization in renal arteries of diabetic rats. Eur. J. Pharmacol. 203:79–84

    Article  PubMed  CAS  Google Scholar 

  16. Kuo L., Chilian W. M., Davis M. J. (1990) Coronary arteriolar myogenic response is independent of endothelium. Circ. Res. 66: 860–866

    PubMed  CAS  Google Scholar 

  17. Landmesser U., Hornig B., Drexler H. (2004) Endothelial function: a critical determinant in atherosclerosis? Circulation 109: II27–II33

    Article  PubMed  Google Scholar 

  18. Mulvany M. J., Halpern W. (1976) Mechanical properties of vascular smooth muscle cells in situ. Nature 260: 617–619

    Article  PubMed  CAS  Google Scholar 

  19. Mulvany M. J., Halpern W. (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ. Res. 41: 19–26

    PubMed  CAS  Google Scholar 

  20. Osol G., Halpern W. (1988) Spontaneous vasomotion in pressurized cerebral arteries from genetically hypertensive rats. Am. J. Physiol. 254: H28–H33

    PubMed  CAS  Google Scholar 

  21. Petersen H. H., Choy J., Stauffer B., Moien-Afshari F., Aalkjaer C., Leinwand L., McManus B. M., Laher I. (2002) Coronary artery myogenic response in a genetic model of hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 283: H2244–H2249

    PubMed  CAS  Google Scholar 

  22. Renaudin C., Michoud E., Lagarde M., Wiernsperger N.(1999) Impaired microvascular responses to acute hyperglycemia in type I diabetic rats. J. Diabetes Complications 13: 39–44

    Article  PubMed  CAS  Google Scholar 

  23. Seino Y., Tsukamoto H., Ohki K., Nakamura T., Kashiwagi M., Takano T., Hayakawa H. (1993) Abnormal cutaneous vasomotion and reduced cutaneous blood mass remain in congestive heart failure even with normalized cardiovascular hemodynamics. Am. Heart J. 126: 887–895

    Article  PubMed  CAS  Google Scholar 

  24. Sho E., Nanjo H., Sho M., Kobayashi M., Komatsu M., Kawamura K., Xu C., Zarins C. K., Masuda H. (2004) Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress. J. Vasc. Surg. 39: 601–612

    Article  PubMed  Google Scholar 

  25. Speden R. N., Warren D. M. (1986) The interaction between noradrenaline activation and distension activation of the rabbit ear artery. J. Physiol. 375:283–302

    PubMed  CAS  Google Scholar 

  26. Stansberry K. B., Shapiro S. A., Hill M. A., McNitt P. M., Meyer M. D., Vinik A. I. (1996) Impaired peripheral vasomotion in diabetes. Diabetes Care 19: 715–721

    PubMed  CAS  Google Scholar 

  27. VanBavel E., Mulvany M. J. (1994) Role of wall tension in the vasoconstrictor response of cannulated rat mesenteric small arteries. J. Physiol. 477 (Pt 1):103–115

    PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Institute of Health-National Heart, Lung, and Blood Institute Grant 2 R01 HL055554-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan S. Kassab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Kassab, G.S. Vasoactivity of Blood Vessels Using a Novel Isovolumic Myograph. Ann Biomed Eng 35, 356–366 (2007). https://doi.org/10.1007/s10439-006-9243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9243-0

Keywords

Navigation