Skip to main content
Log in

Understanding Effects of Matrix Protease and Matrix Organization on Directional Persistence and Translational Speed in Three-Dimensional Cell Migration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent studies have shown significant differences in migration mechanisms between two- and three-dimensional environments. While experiments have suggested a strong dependence of in vivo migration on both structure and proteolytic activity, the underlying biophysics of such dependence has not been studied adequately. In addition, the existing models of persistent random walk migration are primarily based on two-dimensional movement and do not account for the effect of proteolysis or matrix inhomogeneity. Using lattice Monte Carlo methods, we present a model to study the role of matrix metallo-proteases (MMPs) on directional persistence and speed. The simulations account for a given cell’s ability to deform as well as to digest the matrix as the cell moves in three dimensions. Our results show a bimodal dependence of speed and persistence on matrix pore size and suggest high sensitivity on MMP activity, which is in very good agreement with experimental studies carried out in 3D matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.

Similar content being viewed by others

References

  1. Burgess B. T., Myles J. L., Dickinson R. B. (2000) Quantitative analysis of adhesion-mediated cell migration in three-dimensional gels of RGD-grafted collagen. Ann. Biomed. Eng. 28(1): 110–118

    Article  CAS  PubMed  Google Scholar 

  2. Cukierman E., Pankov R., Stevens D. R., Yamada K. M. (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547): 1708–1712

    Article  CAS  PubMed  Google Scholar 

  3. Cukierman E., Pankov R., Yamada K. M. (2002) Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14(5): 633–699

    Article  CAS  PubMed  Google Scholar 

  4. Dickinson R. B., Tranquillo R. T. (1993) Optimal Esitmation of Cell Movement Indices from the Statistical Analysis of Cell Tracking Data. AIChEJ. 39(12): 1995–2010

    Article  Google Scholar 

  5. Discher D. E., Janmey P., Wang Y. L. (2005) Tissue cells feel and respond to the stiffness of their substrate. .Science 310(5751): 1139–1143

    Article  CAS  PubMed  Google Scholar 

  6. Dunn G. A. (1983) Characterising a kinesis response: time averaged measures of cell speed and directional persistence. Agents Actions Suppl. 12: 14–33

    CAS  PubMed  Google Scholar 

  7. Friedl P., Brocker E. B. (2000) The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol. Life Sci. 57(1): 41–64

    Article  CAS  PubMed  Google Scholar 

  8. Friedl P., Wolf K. (2003) Tumour-cell invasion and migration: diversity and escape mechanisms .Nat. Rev. Cancer 3(5): 362–374

    Article  CAS  PubMed  Google Scholar 

  9. Giannone G., Dubin-Thaler B. J., Dobereiner H. G., Kieffer N., Bresnick A. R., Sheetz M. P. (2004) Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116(3): 431–443

    Article  CAS  PubMed  Google Scholar 

  10. Harms B. D., Bassi G. M., Horwitz A. R., Lauffenburger D. A. (2005) Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys J. 88(2): 1479–1488

    Article  CAS  PubMed  Google Scholar 

  11. Kuntz R. M., Saltzman W. M. (1997) Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys. J. 72(3): 1472–1480

    Article  CAS  PubMed  Google Scholar 

  12. Lauffenburger D. A., Horwitz A. F. (1996) Cell migration: a physically integrated molecular process. Cell 84(3): 359–369

    Article  CAS  PubMed  Google Scholar 

  13. Lutolf M. P., Lauer-Fields J. L., Schmoekel H. G., Metters A. T., Weber F. E., Fields G. B., Hubbell J. A. (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. U S A. 100(9): 5413–5418

    Article  CAS  PubMed  Google Scholar 

  14. O’Brien F. J., Harley B. A., Yannas I. V., Gibson L. (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25(6): 1077–1086

    Article  CAS  PubMed  Google Scholar 

  15. Pek Y. S., Spector M., Yannas I. V., Gibson L. J. (2004) Degradation of a collagen-chondroitin-6-sulfate matrix by collagenase and by chondroitinase. Biomaterials 25(3): 473–482

    Article  CAS  PubMed  Google Scholar 

  16. Raeber G. P., Lutolf M. P., Hubbell J. A. (2005) Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89(2): 1374–1388

    Article  CAS  PubMed  Google Scholar 

  17. Ridley A. J., Schwartz M. A., Burridge K., Firtel R. A., Ginsberg M. H., Borisy G., Parsons J. T., Horwitz A. R. (2003) Cell migration: integrating signals from front to back. Science 302(5651): 1704–1709

    Article  CAS  PubMed  Google Scholar 

  18. Shreiber D. I., Barocas V. H., Tranquillo R. T. (2003) Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys. J. 84(6): 4102–4114

    CAS  PubMed  Google Scholar 

  19. Wolf K., Mazo I., Leung H., Engelke K., von Andrian U. H., Deryugina E. I., Strongin A. Y., Brocker E. B., Friedl P. (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160(2): 267–277

    Article  CAS  PubMed  Google Scholar 

  20. Zaman M. H., Kamm R. D., Matsudaira P., Lauffenburger D. A. (2005) Computational model for cell migration in three-dimensional matrices. Biophys. J. 89(2): 1389–1397

    Article  CAS  PubMed  Google Scholar 

  21. Zaman M. H., Trapani L. M., Siemeski A., Mackellar D., Gong H., Kamm R. D., Wells A., Lauffenburger D. A., Matsudaira P. (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. U S A 103(29): 10889–10894

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professors R. Dickinson, A. Mogilner for their insightful comments on our simulation methods and analysis. This work was supported by NIH grant R01-GM 57418 (PM), NSF grant NIRT 0304128 (PM), the NIGMS Cell Migration Consortium (DAL), the NCI Integrative Cancer Biology Program (DAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad H. Zaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaman, M.H., Matsudaira, P. & Lauffenburger, D.A. Understanding Effects of Matrix Protease and Matrix Organization on Directional Persistence and Translational Speed in Three-Dimensional Cell Migration. Ann Biomed Eng 35, 91–100 (2007). https://doi.org/10.1007/s10439-006-9205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9205-6

Keywords

Navigation