Skip to main content

Advertisement

Log in

Multi-Scale Computational Model of Fuel Homeostasis During Exercise: Effect of Hormonal Control

  • OriginalPaper
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model of the whole-body metabolism is developed to predict fuel homeostasis during exercise by using hormonal control over cellular metabolic processes. The whole body model is composed of seven tissue compartments: brain, heart, liver, GI (gastrointestinal) tract, skeletal muscle, adipose tissue, and “other tissues”. Each tissue compartment is described by dynamic mass balances and major cellular metabolic reactions. The glucagon–insulin controller is incorporated into the whole body model to predict hormonal changes during exercise. Moderate [150 W power output at 60% of peak oxygen consumption (VO2max)] exercise for 60 min was implemented by increasing ATP utilization rates in heart and skeletal muscle. Arterial epinephrine level was given as an input function, which directly affects heart and skeletal muscle metabolism and indirectly other tissues via glucagon–insulin controller. Model simulations were validated with experimental data from human exercise studies. The exercise induced changes in hormonal signals modulated metabolic flux rates of different tissues in a coordinated way to achieve glucose homeostasis, demonstrating the efficacy of hormonal control over cellular metabolic processes. From experimental measurements of whole body glucose balance and arterial substrate concentrations, this model could predict the dynamic changes of hepatic glycogenolysis and gluconeogenesis, which are not easy to measure experimentally, suggesting the higher contribution of glycogenolysis (∼75%). In addition, it could provide dynamic information on the relative contribution of carbohydrates and lipids for fuel oxidation in skeletal muscle. Model simulations indicate that external fuel supplies from other tissue/organ systems to skeletal muscle become important for prolonged exercise emphasizing the significance of interaction among tissues. In conclusion, this model can be used as a valuable complement to experimental studies due to its ability to predict what is difficult to measure directly, and usefulness to provide information about dynamic behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  1. Abumrad N. N., Cherrington A. D., Williams P. E., Lacy W. W., Rabin D. (1982). Absorption and disposition of a glucose load in the conscious dog. Am. J. Physiol. 242:E398–E406

    CAS  PubMed  Google Scholar 

  2. Ahlborg G., Felig P., Hagenfeldt L., Hendler R., Wahren J. (1974). Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J. Clin. Invest. 53:1080–1090

    Article  CAS  PubMed  Google Scholar 

  3. Aubert A., Costalat R., Duffau H., Benali H. (2002). Modeling of pathophysiological coupling between brain electrical activation, energy metabolism and hemodynamics: insights for the interpretation of intracerebral tumor imaging. Acta Biotheor. 50:281–295

    Article  PubMed  Google Scholar 

  4. Auricchio A., Zhou R., Wilson J. M., Glickson J. D. (4–24–2001). In vivo detection of gene expression in liver by 31P nuclear magnetic resonance spectroscopy employing creatine kinase as a marker gene. Proc. Natl. Acad. Sci. USA 98:5205–5210

    Article  CAS  PubMed  Google Scholar 

  5. Barzilai N., Rossetti L. (1993). Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J. Biol. Chem. 268:25019–25025

    CAS  PubMed  Google Scholar 

  6. Bergman B. C., Brooks G. A. (1999) Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J. Appl. Physiol. 86:479–487

    CAS  PubMed  Google Scholar 

  7. Bergman B. C., Butterfield G. E., Wolfel E. E., Casazza G. A., Lopaschuk G. D., Brooks G. A. (1999). Evaluation of exercise and training on muscle lipid metabolism. Am. J. Physiol. 276:E106–E117

    CAS  PubMed  Google Scholar 

  8. Bergman B. C., Butterfield G. E., Wolfel E. E., Lopaschuk G. D., Casazza G. A., Horning M. A., Brooks G. A. (1999). Muscle net glucose uptake and glucose kinetics after endurance training in men. Am. J. Physiol. 277:E81–E92

    CAS  PubMed  Google Scholar 

  9. Bergman B. C., Horning M. A., Casazza G. A., Wolfel E. E., Butterfield G. E., Brooks G. A. (2000). Endurance training increases gluconeogenesis during rest and exercise in men. Am. J. Physiol Endocrinol. Metab. 278:E244–E251

    CAS  PubMed  Google Scholar 

  10. Bergman B. C., Wolfel E. E., Butterfield G. E., Lopaschuk G. D., Casazza G. A., Horning M. A., Brooks G. A. (1999). Active muscle and whole body lactate kinetics after endurance training in men. J. Appl. Physiol. 87:1684–1696

    CAS  PubMed  Google Scholar 

  11. Bergman R. N., Ider Y. Z., Bowden C. R., Cobelli C. (1979). Quantitative estimation of insulin sensitivity. Am. J. Physiol. 236:E667–E677

    CAS  PubMed  Google Scholar 

  12. Bjorkman O., Eriksson L. S., Nyberg B., Wahren J. (1990). Gut exchange of glucose and lactate in basal state and after oral glucose ingestion in postoperative patients. Diabetes. 39:747–751

    CAS  PubMed  Google Scholar 

  13. Bode J. C., Zelder O., Rumpelt H. J., Wittkamp U. (1973). Depletion of liver adenosine phosphates and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat. Eur. J. Clin. Invest. 3:436–441

    CAS  PubMed  Google Scholar 

  14. Brooks G. A., Mercier J. (1994). Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J. Appl. Physiol. 76:2253–2261

    CAS  PubMed  Google Scholar 

  15. Brundin T., Branstrom R., Wahren J. (1996). Effects of oral vs. i.v. glucose administration on splanchnic and extrasplanchnic O2 uptake and blood flow. Am. J. Physiol. 271:E496–E504

    CAS  PubMed  Google Scholar 

  16. Brundin T., Wahren J. (1993). Whole body and splanchnic oxygen consumption and blood flow after oral ingestion of fructose or glucose. Am. J. Physiol. 264:E504–E513

    CAS  PubMed  Google Scholar 

  17. Cabrera M. E., Saidel G. M., Kalhan S. C. (1998). Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis. Ann. Biomed. Eng. 26:1–27

    Article  CAS  PubMed  Google Scholar 

  18. Cabrera M. E., Saidel G. M., Kalhan S. C. (1999). Lactate metabolism during exercise: analysis by an integrative systems model. Am. J. Physiol. 277:R1522–R1536

    CAS  PubMed  Google Scholar 

  19. Chen J., Gollnick P. D. (1994). Effect of exercise on hexokinase distribution and mitochondrial respiration in skeletal muscle. Pflugers Arch. 427:257–263

    Article  CAS  PubMed  Google Scholar 

  20. Cruz J. (2003). Expensive cerebral blood flow measurements alone are useless and misinformative in comatose patients: a comprehensive alternative. Arq Neuropsiquiatr. 61:309–312

    PubMed  Google Scholar 

  21. Dash R. K., Bassingthwaighte J. B. (2006). Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate and hydrogen ion. Ann. Biomed. Eng. 34:1129–1148

    Article  PubMed  Google Scholar 

  22. Dash, R. K., Y. Li, G. M. Saidel, and M. E. Cabrera. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: In-silico studies. Am. J. Physiol Cell Physiol. 2006 (provisionally accepted).

  23. Davis S. N., Galassetti P., Wasserman D. H., Tate D. (2000). Effects of gender on neuroendocrine and metabolic counterregulatory responses to exercise in normal man. J. Clin. Endocrinol. Metab. 85:224–230

    Article  CAS  PubMed  Google Scholar 

  24. Delzenne N. M., Kok N. N. (1999). Biochemical basis of oligofructose-induced hypolipidemia in animal models. J. Nutr. 129:1467S–1470S

    CAS  PubMed  Google Scholar 

  25. Ekberg K., Landau B. R., Wajngot A., Chandramouli V., Efendic S., Brunengraber H., Wahren J. (1999). Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 48:292–298

    CAS  PubMed  Google Scholar 

  26. Ercan-Fang N., Gannon M. C., Rath V. L., Treadway J. L., Taylor M. R., Nuttall F. Q. (2002). Integrated effects of multiple modulators on human liver glycogen phosphorylase a. Am. J. Physiol Endocrinol. Metab. 283:E29–E37

    CAS  PubMed  Google Scholar 

  27. Frayn K. N., Shadid S., Hamlani R., Humphreys S. M., Clark M. L., Fielding B. A., Boland O., Coppack S. W. (1994). Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am. J. Physiol. 266:E308–E317

    CAS  PubMed  Google Scholar 

  28. Friedlander A. L., Casazza G. A., Horning M. A., Huie M. J., Brooks G. A. (1997). Training-induced alterations of glucose flux in men. J. Appl. Physiol. 82:1360–1369

    CAS  PubMed  Google Scholar 

  29. Friedlander A. L., Casazza G. A., Horning M. A., Usaj A., Brooks G. A. (1999). Endurance training increases fatty acid turnover, but not fat oxidation, in young men. J. Appl. Physiol. 86:2097–2105

    CAS  PubMed  Google Scholar 

  30. Galbo H., Richter E. A., Hilsted J., Holst J. J., Christensen N. J., Henriksson J. (1977). Hormonal regulation during prolonged exercise. Ann. N. Y. Acad. Sci. 301:72–80

    CAS  PubMed  Google Scholar 

  31. Gerich J. E. (2000). Physiology of glucose homeostasis. Diabetes Obes. Metab. 2:345–350

    Article  CAS  PubMed  Google Scholar 

  32. Gerich J.E. (1993). Control of glycaemia. Baillieres Clin. Endocrinol. Metab. 7:551–586

    Article  CAS  PubMed  Google Scholar 

  33. Gross R. C., Eigenbrodt E. H., Farquhar J. W. (1967). Endogenous triglyceride turnover in liver and plasma of the dog. J. Lipid Res. 8:114–125

    CAS  PubMed  Google Scholar 

  34. Harvey W. D., Faloona G. R., Unger R. H. (1974). The effect of adrenergic blockade on exercise-induced hyperglucagonemia. Endocrinology 94:1254–1258

    Article  CAS  PubMed  Google Scholar 

  35. Henderson G. C., Horning M. A., Lehman S. L., Wolfel E. E., Bergman B. C., Brooks G. A. (2004). Pyruvate shuttling during rest and exercise before and after endurance training in men. J. Appl. Physiol. 97:317–325

    Article  CAS  PubMed  Google Scholar 

  36. Hirsch I. B., Marker J. C., Smith L. J., Spina R. J., Parvin C. A., Holloszy J. O., Cryer P. E. (1991). Insulin and glucagon in prevention of hypoglycemia during exercise in humans. Am. J. Physiol. 260:E695–E704

    CAS  PubMed  Google Scholar 

  37. Hudetz A.G. (1999). Mathematical model of oxygen transport in the cerebral cortex. Brain Res. 817:75–83

    Article  CAS  PubMed  Google Scholar 

  38. Hultman E., Nilsson L. H., Sahlin K. (1975). Adenine nucleotide content of human liver. Normal values and fructose-induced depletion. Scand. J. Clin. Lab Invest. 35:245–251

    CAS  PubMed  Google Scholar 

  39. Hundal R. S., Krssak M., Dufour S., Laurent D., Lebon V., Chandramouli V., Inzucchi S. E., Schumann W. C., Petersen K. F., Landau B. R., Shulman G. I. (2000). Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49:2063–2069

    CAS  PubMed  Google Scholar 

  40. Ide K., Horn A., Secher N. H. (1999). Cerebral metabolic response to submaximal exercise. J. Appl. Physiol. 87:1604–1608

    CAS  PubMed  Google Scholar 

  41. Ide, K., I. K. Schmalbruch, B. Quistorff, A. Horn, and N. H. Secher. Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J. Physiol. 522 Pt 1:159–164, 2000

    Google Scholar 

  42. Jensen M. D. (1999). Regional glycerol and free fatty acid metabolism before and after meal ingestion. Am. J. Physiol. 276:E863–E869

    CAS  PubMed  Google Scholar 

  43. Karpe F., Fielding B. A., Ardilouze J. L., Ilic V., Macdonald I. A., Frayn K. N. (2002). Effects of insulin on adipose tissue blood flow in man. J. Physiol. 540:1087–1093

    Article  CAS  PubMed  Google Scholar 

  44. Kemp B. E., Mitchelhill K. I., Stapleton D., Michell B. J., Chen Z. P., Witters L. A. (1999). Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem. Sci. 24:22–25

    Article  CAS  PubMed  Google Scholar 

  45. Klein S., Wolfe R. R. (1990). Whole-body lipolysis and triglyceride-fatty acid cycling in cachectic patients with esophageal cancer. J. Clin. Invest. 86:1403–1408

    CAS  PubMed  Google Scholar 

  46. Korzeniewski B., Liguzinski P. (2004). Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Biophys. Chem. 110:147–169

    Article  CAS  PubMed  Google Scholar 

  47. Krebs H. A., Hems R., Weidemann M. J., Speake R. N. (1966). The fate of isotopic carbon in kidney cortex synthesizing glucose from lactate. Biochem. J. 101:242–249

    CAS  PubMed  Google Scholar 

  48. Krudys K. M., Dodds M. G., Nissen S. M., Vicini P. (2005). Integrated model of hepatic and peripheral glucose regulation for estimation of endogenous glucose production during the hot IVGTT. Am. J. Physiol Endocrinol. Metab. 288:E1038–E1046

    Article  CAS  PubMed  Google Scholar 

  49. Lambeth M. J., Kushmerick M. J. (2002). A computational model for glycogenolysis in skeletal muscle. Ann. Biomed. Eng. 30:808–827

    Article  PubMed  Google Scholar 

  50. Landau B. R., Wahren J., Chandramouli V., Schumann W. C., Ekberg K., Kalhan S. C. (1995). Use of 2H2O for estimating rates of gluconeogenesis. Application to the fasted state. J. Clin. Invest. 95:172–178

    CAS  Google Scholar 

  51. Lund S., Holman G. D., Schmitz O., Pedersen O. (1995). Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc. Natl. Acad. Sci. USA 92:5817–5821

    Article  CAS  PubMed  Google Scholar 

  52. Luyckx A. S., Lefebvre P. J. (1974). Mechanisms involved in the exercise-induced increase in glucagon secretion in rats. Diabetes 23:81–93

    CAS  PubMed  Google Scholar 

  53. Martin W. H. III, Dalsky G. P., Hurley B. F., Matthews D. E., Bier D. M., Hagberg J. M., Rogers M. A., King D. S., Holloszy J. O. (1993). Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am. J. Physiol. 265:E708–E714

    CAS  PubMed  Google Scholar 

  54. Mikines K. J., Richter E. A., Dela F., Galbo H. (1991). Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body. J. Appl. Physiol. 70:1245–1254

    CAS  PubMed  Google Scholar 

  55. Miyoshi H., Shulman G. I., Peters E. J., Wolfe M. H., Elahi D., Wolfe R. R. (1988). Hormonal control of substrate cycling in humans. J. Clin. Invest. 81:1545–1555

    CAS  PubMed  Google Scholar 

  56. Morikawa S., Inubushi T., Takahashi K., Ishii H., Ozawa K. (1998). Gluconeogenesis and phosphoenergetics in rat liver during endotoxemia. J. Surg. Res. 74:179–186

    Article  CAS  PubMed  Google Scholar 

  57. Musi N., Goodyear L.J. (2003). AMP-activated protein kinase and muscle glucose uptake. Acta Physiol Scand. 178:337–345

    Article  CAS  PubMed  Google Scholar 

  58. Nybo L., Nielsen B., Blomstrand E., Moller K., Secher N. (2003). Neurohumoral responses during prolonged exercise in humans. J. Appl. Physiol. 95:1125–1131

    CAS  PubMed  Google Scholar 

  59. Odland L. M., Heigenhauser G. J., Wong D., Hollidge-Horvat M. G., Spriet L. L. (1998). Effects of increased fat availability on fat-carbohydrate interaction during prolonged exercise in men. Am. J. Physiol. 274:R894–R902

    CAS  PubMed  Google Scholar 

  60. Petersen K. F., Krssak M., Navarro V., Chandramouli V., Hundal R., Schumann W. C., Landau B. R., Shulman G. I. (1999). Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. Am. J. Physiol. 276:E529–E535

    CAS  PubMed  Google Scholar 

  61. Petersen K. F., Price T., Cline G. W., Rothman D. L., Shulman G. I. (1996). Contribution of net hepatic glycogenolysis to glucose production during the early postprandial period. Am. J. Physiol. 270:E186–E191

    CAS  PubMed  Google Scholar 

  62. Putman C. T., Jones N. L., Hultman E., Hollidge-Horvat M. G., Bonen A., McConachie D. R., Heigenhauser G. J. (1998). Effects of short-term submaximal training in humans on muscle metabolism in exercise. Am. J. Physiol. 275:E132–E139

    CAS  PubMed  Google Scholar 

  63. Reshef L., Olswang Y., Cassuto H., Blum B., Croniger C. M., Kalhan S. C., Tilghman S. M., Hanson R. W. (2003) Glyceroneogenesis and the triglyceride/fatty acid cycle. J. Biol. Chem. 278:30413–30416

    Article  CAS  PubMed  Google Scholar 

  64. Richter E. A., Nielsen J. N., Jorgensen S. B., Frosig C., Wojtaszewski J. F. (2003). Signalling to glucose transport in skeletal muscle during exercise. Acta Physiol Scand. 178:329–335

    Article  CAS  PubMed  Google Scholar 

  65. Salem J. E., Saidel G. M., Stanley W. C., Cabrera M. E. (2002). Mechanistic model of myocardial energy metabolism under normal and ischemic conditions. Ann. Biomed. Eng. 30:202–216

    Article  PubMed  Google Scholar 

  66. Samols E., Weir G. C. (1979). Adrenergic modulation of pancreatic A, B, and D cells alpha-Adrenergic suppression and beta-adrenergic stimulation of somatostatin secretion, alpha-adrenergic stimulation of glucagon secretion in the perfused dog pancreas. J. Clin. Invest. 63:230–238

    CAS  PubMed  Google Scholar 

  67. Saunders P. T., Koeslag J. H., Wessels J. A. (1998). Integral rein control in physiology. J. Theor. Biol. 194:163–173

    Article  CAS  PubMed  Google Scholar 

  68. Saunders P. T., Koeslag J. H., Wessels J. A. (2000). Integral rein control in physiology II: a general model. J. Theor. Biol. 206:211–220

    Article  CAS  PubMed  Google Scholar 

  69. Shulman G.I. (2004). Unraveling the cellular mechanism of insulin resistance in humans: new insights from magnetic resonance spectroscopy. Physiology (Bethesda.). 19:183–190

    CAS  Google Scholar 

  70. Shulman G. I., Ladenson P. W., Wolfe M. H., Ridgway E. C., Wolfe R. R. (1985). Substrate cycling between gluconeogenesis and glycolysis in euthyroid, hypothyroid, and hyperthyroid man. J. Clin. Invest. 76:757–764

    CAS  PubMed  Google Scholar 

  71. Sigal R. J., Kenny G. P., Wasserman D. H., Castaneda-Sceppa C. (2004). Physical activity/exercise and type 2 diabetes. Diabetes Care 27:2518–2539

    PubMed  Google Scholar 

  72. Simoncikova P., Wein S., Gasperikova D., Ukropec J., Certik M., Klimes I., Sebokova E. (2002). Comparison of the extrapancreatic action of gamma-linolenic acid and n-3 PUFAs in the high fat diet-induced insulin resistance [corrected]. Endocr. Regul. 36:143–149

    CAS  PubMed  Google Scholar 

  73. Sindelar D. K., Chu C. A., Venson P., Donahue E. P., Neal D. W., Cherrington A. D. (1998). Basal hepatic glucose production is regulated by the portal vein insulin concentration. Diabetes 47:523–529

    CAS  PubMed  Google Scholar 

  74. Stanley W. C., Gertz E. W., Wisneski J. A., Neese R. A., Morris D. L., Brooks G. A. (1986). Lactate extraction during net lactate release in legs of humans during exercise. J. Appl. Physiol. 60:1116–1120

    CAS  PubMed  Google Scholar 

  75. Strisower E. H., Kohler G. D., Chaikoff I. L. (1952). Incorporation of acetate carbon into glucose by liver slices from normal and alloxan-diabetic rats. J. Biol. Chem. 198:115–126

    CAS  PubMed  Google Scholar 

  76. Tiessen R. G., Rhemrev-Boom M. M., Korf J. (2002). Glucose gradient differences in subcutaneous tissue of healthy volunteers assessed with ultraslow microdialysis and a nanolitre glucose sensor. Life Sci. 70:2457–2466

    Article  CAS  PubMed  Google Scholar 

  77. Trimmer J. K., Schwarz J. M., Casazza G. A., Horning M. A., Rodriguez N., Brooks G. A. (2002). Measurement of gluconeogenesis in exercising men by mass isotopomer distribution analysis. J. Appl. Physiol. 93:233–241

    CAS  PubMed  Google Scholar 

  78. Turcotte L. P., Richter E. A., Kiens B. (1992). Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am. J. Physiol. 262:E791–E799

    CAS  PubMed  Google Scholar 

  79. Vicini P., Zachwieja J. J., Yarasheski K. E., Bier D. M., Caumo A., Cobelli C. (1999). Glucose production during an IVGTT by deconvolution: validation with the tracer-to-tracee clamp technique. Am. J. Physiol. 276:E285-E294

    CAS  PubMed  Google Scholar 

  80. Wahren J., Felig P., Ahlborg G., Jorfeldt L. (1971). Glucose metabolism during leg exercise in man. J. Clin. Invest. 50:2715–2725

    CAS  PubMed  Google Scholar 

  81. Wahren J., Hagenfeldt L., Felig P. (1975). Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus. J. Clin. Invest. 55:1303–1314

    CAS  PubMed  Google Scholar 

  82. Warram J. H., Martin B. C., Krolewski A. S., Soeldner J. S., Kahn C. R. (1990). Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann. Intern. Med. 113:909–915

    CAS  PubMed  Google Scholar 

  83. Wasserman D. H., Ayala J. E. (2005). Interaction of physiological mechanisms in control of muscle glucose uptake. Clin. Exp. Pharmacol. Physiol. 32:319–323

    Article  CAS  PubMed  Google Scholar 

  84. Wasserman D. H., Cherrington A. D. (1991) Hepatic fuel metabolism during muscular work: role and regulation. Am. J. Physiol. 260:E811–E824

    CAS  PubMed  Google Scholar 

  85. Wasserman D. H., Halseth A. E. (1998). An overview of muscle glucose uptake during exercise. Sites of regulation. Adv. Exp. Med. Biol. 441:1–16

    CAS  PubMed  Google Scholar 

  86. Wasserman D. H., Vranic M. (1986). Interaction between insulin and counterregulatory hormones in control of substrate utilization in health and diabetes during exercise. Diabetes Metab. Rev. 1:359–384

    Article  CAS  PubMed  Google Scholar 

  87. Wisneski J. A., Gertz E. W., Neese R. A., Gruenke L. D., Morris D. L., Craig J. C. (1985). Metabolic fate of extracted glucose in normal human myocardium. J. Clin. Invest. 76:1819–1827

    CAS  PubMed  Google Scholar 

  88. Zhou L., Salem J. E., Saidel G. M., Stanley W. C., Cabrera M. E. (2005). Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia. Am. J. Physiol Heart Circ. Physiol. 288:H2400–H2411

    Article  CAS  PubMed  Google Scholar 

  89. Zhou L., Stanley W. C., Saidel G. M., Yu X., Cabrera M. E. (2005). Regulation of lactate production at the onset of ischemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. J. Physiol. 569:925–937

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grant (P50-GM-66309) from the National Institute of General Medical Sciences for developing the Center for Modeling Integrated Metabolic Systems. The authors appreciate the helpful suggestions from John Kirwan and Ranjan Dash, and the effort to construct the physiological database for this whole body model by Jennifer Salem, Valerie Jurkovich, and Haiying Zhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco E. Cabrera.

Appendices

Appendix

Appendix 1. Kinetic equations for the metabolic reactions in tissue x.

   

Appendix 2. Dynamic mass balance equations in tissue x.

   

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Saidel, G.M. & Cabrera, M.E. Multi-Scale Computational Model of Fuel Homeostasis During Exercise: Effect of Hormonal Control. Ann Biomed Eng 35, 69–90 (2007). https://doi.org/10.1007/s10439-006-9201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9201-x

Keywords

Navigation