Skip to main content
Log in

Development of a Mathematical Model of the Human Circulatory System

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A mathematical lumped parameter model of the human circulatory system (HCS) has been developed to complement in vitro testing of ventricular assist devices. Components included in this model represent the major parts of the systemic HCS loop, with all component parameters based on physiological data available in the literature. Two model configurations are presented in this paper, the first featuring elements with purely linear constitutive relations, and the second featuring nonlinear constitutive relations for the larger vessels. Three different aortic compliance functions are presented, and a pressure-dependent venous flow resistance is used to simulate venous collapse. The mathematical model produces reasonable systemic pressure and flow behaviour, and graphs of this data are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

Similar content being viewed by others

Abbreviations

μ:

viscosity, kg cm−1 s−1

Φ C :

vessel compliance function

Φ I :

vessel inertance function

Φ R :

vessel resistance function

ρ:

density, kg cm−3

A :

cross-sectional area, cm2

C :

compliance, cm5 N−1

D :

diameter, cm

F :

pumping force, N

I :

fluid inertance, N s2 cm−5

I ht :

heart pumping plate mass, N s2 cm−1

L :

length, cm

P :

pressure, N cm−2

p :

fluid momentum, N s cm−2

p ht :

heart pumping plate momentum, N s

Q :

volume flow rate, cm3 s−1

R :

radius, cm or flow resistance, N s cm−5

R ht :

friction in the pump, N s cm−1

r :

radial position coordinate, cm

s ht :

heart pumping plate position, cm

u :

velocity, cm s−1

V :

volume, cm3

x :

linear position coordinate, cm

a :

subscript refers to artery (SCM)

ao :

subscript refers to aorta (DCM)

at :

subscript refers to arteries (DCM)

ht :

subscript refers to heart (pump)

incn :

subscript refers to inlet cannula

inv :

subscript refers to inlet valve

otcn :

subscript refers to outlet cannula

otv :

subscript refers to outlet valve

pe :

subscript refers to peripheral system

v :

subscript refers to venous system (SCM)

vc :

subscript refers to vena cava (DCM)

vn :

subscript refers to venous system (DCM)

REFERENCES

  1. Babbs, C. F. Theoretical advantages of abdominal counterpulsation in cpr as demonstrated in a simple electrical model of the circulation. Ann. Emerg. Med. Part I 13:660–671, 1984.

    Google Scholar 

  2. Conlon, M. J. Design and evaluation of a neural network-based controller for an artificial heart. Master's thesis, Carleton University, 2000.

  3. Donovan, F. H. Design of a hydraulic analog of the human circulatory system for evaluating artificial hearts. Biomat. Med. Dev. Artif. Org. 3(4):439–49, 1975.

    Google Scholar 

  4. Ferrari, G., C. De Lazzari, R. Mimmo, D. Ambrosi, and G. Tosti. Mock circulatory system for in vitro reproduction of the left ventricle, the arterial tree and their interaction with a left ventricular assist device. J. Med. Eng. Technol. 18(3):87–95, 1994.

    Google Scholar 

  5. Fung, Y. C. Biomechanics: Circulation, 2nd ed. Springer-Verlag, 1994.

  6. Guyton, A. C. Human Physiology and Mechanisms of Disease. 5th ed. W. B. Saunders, 1992.

  7. King, A. L. Pressure-volume relation for cylindrical tubes with elastomeric walls: The human aorta. J. Appl. Phys. 17(6):501–505, 1946.

    Google Scholar 

  8. Kolff, W. J. Mock circulation to test pumps designed for permanent replacement of damaged hearts. Clev. Clin. Quart. 26:223–226, 1959.

    Google Scholar 

  9. Laskey, W. K., H. G. Parker, V. A. Ferrari, W. G. Mussmaul, and A. Noodergraaf. Estimation of total systemic arterial compliance in humans. J. Appl. Phys. 69(1):112–119, 1990.

    Google Scholar 

  10. Lee, T. C., K. F. Huang, et al. Electrical lumped model for arterial vessel beds. Comput. Met. Prog. Biomed. 73(3):209–219, 2004.

    Google Scholar 

  11. Liu, K. P., Z. Brin, and F. C. P. Yin. Estimation of total arterial compliance: An improved method and evaluation of current methods. Am. J. Physiol. 251(20):H588–H600, 1986.

    Google Scholar 

  12. Lu, K. Jr., J. W. Clark, F. H. Ghorbel, D. L. Ware, and A. Bidani. A human cardiopulmonary system model applied to the analysis of the Valsalva maneuver. Am. J. Physiol. Heart Circ. Physiol. 281(6):H2661–H2679, 2001.

    Google Scholar 

  13. McGhee, B. H., and E. J. Bridges. Monitoring arterial blood pressure: What you may not know. Crit. Care Nurse 22(2):60–78, 2002.

    Google Scholar 

  14. Menon, V. Fuzzy logic controller for an artificial heart. Master's thesis, Carleton University, 1998.

  15. Mrava, G. L. Mock circulation system for artificial hearts. Adv. Biomed. Eng. Med. Phys. 3:115–130, 1970.

    Google Scholar 

  16. Ogino, H., N. Klangsuk, W. Jin, C. T. Bowles, and M. H. Yacoub. Influence of the compliance of the pump housing and cannulas of a paracorporeal pneumatic ventricular assist device on transient pressure characteristics. Artif. Org., 19(6):525–534, 1995.

    Google Scholar 

  17. Shampine, L. F., and M. W. Reichelt. The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1):1–22, 1997.

    Google Scholar 

  18. Stergiopulos, N., J. J. Meister, and N. Westerhof. Simple and accurate way for estimating total and segmental arterial compliance: The pulse pressure method. Ann. Biomed. Eng. 22(4):392–397, 1994.

    Google Scholar 

  19. Stergiopulos, N., B. E. Westerhof, and N. Westerhof. Total arterial compliance as the fourth element of the windkessel model. Am. J. Physiol. 276(1):H81–H88, 1999.

    Google Scholar 

  20. Swanson, W. M., and R. E. Clark. A simple cardiovascular system simulator. J. Bioeng. 1(2):135–145, 1977.

    Google Scholar 

  21. Tan, S. Development of a dynamic model of a ventricular assist device for investigation of control systems. Master's thesis, Carleton University, 1996.

  22. Tortora, G. J., and S. R. Grabowski. Principles of Anatomy and Physiology, 9th ed. John Wiley and Sons, 2000.

  23. Tsach, U., D. B. Geselowitz, A. Sinha, and H. K. Hsu. A novel output-feedback pusher plate controller for the penn state electric ventricular assist device. J. Dyn. Syst. Meas. Cont. Trans. ASME 111(1):69–74, 1989.

    Google Scholar 

  24. Tsitlik, J. E., and H. R. Halperin, et al. Modeling the circulation with three-terminal electrical networks containing special nonlinear capacitors. Ann. Biomed. Eng. 20(6):595–616, 1992.

    Google Scholar 

  25. White, F. M. Fluid Mechanics. 3rd ed. McGraw-Hill, 1994.

  26. Woodruff, S. J., M. K. Sharp, and G. M. Pantalos. Compact compliance chamber design for the study of cardiac performance in microgravity. ASAIO J. 43(4):316–320, 1997.

    Google Scholar 

  27. Xu, L., and M. Fu. Computer modeling of interactions of an electric motor, circulatory system, and rotary blood pump. ASAIO J. 46(5):604–611, 2000.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada as well as support from the Medical Devices Centre located at the University of Ottawa Heart Institute. We also acknowledge the contributions of Sean Tan and Vinay Menon who contributed to the development of this model during their graduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald L. Russell.

APPENDIX

APPENDIX

A. STATE EQUATIONS FOR THE MODEL

The following differential equations describe the behaviour of the model with the linear arterial and linear venous segments inserted:

$$\displaylines{ \makeatletter\renewcommand\theequation{A.\arabic{equation}}\setcounter{equation}{0}\makeatother \dot{s}_{\rm ht}(t) = \frac{p_{ht}(t)}{I_{ht}}\cr \dot{p}_{ht}(t) = F(t)-\frac{p_{ht}(t)\cdot R_{ht}}{I_{ht}}-A_{ht}\cdot P_{ht}(V_{ht}(t)) \cr \dot{V}_{ht}(t) = \frac{p_{ht}(t)\cdot A_{ht}}{I_{ht}} \cr +\,R_{\rm inv}(P_{\rm incn}(V_{\rm incn}(t))-P_{ht}(V_{ht}(t)))\cr -\,R_{\rm otv}(P_{ht}(V_{ht}(t))-P_{\rm otcn}(V_{\rm otcn}(t))) \cr \dot{V}_{\rm otcn}(t) = R_{\rm otv}(P_{ht}(V_{ht}(t))-P_{\rm otcn}(V_{\rm otcn}(t)))\cr -\,\frac{p_{\rm otcn}(t)}{I_{\rm otcn}}\cr \dot{p}_{\rm otcn}(t) = P_{\rm otcn}(V_{\rm otcn}(t))-\frac{p_{\rm otcn}(t)\cdot R_{\rm otcn}}{I_{\rm otcn}}\cr -\,P_{a}(V_{a}(t))\cr \dot{V}_{a}(t) = \frac{p_{\rm otcn}(t)}{I_{\rm otcn}}-\frac{p_{\rm pe}(t)}{I_{\rm pe}}\cr \dot{p}_{\rm pe}(t) = P_{a}(V_{a}(t))-\frac{R_{\rm pe}\cdot p_{\rm pe}(t)}{I_{\rm pe}}\cr \dot{V}_{v}(t) = \frac{p_{\rm pe}(t)}{I_{\rm pe}}-\frac{p_{\rm incn}(t)}{I_{\rm incn}}\cr \dot{p}_{\rm incn}(t) = P_{v}(V_{v}(t))-\frac{p_{\rm incn}(t)\cdot R_{\rm incn}}{I_{\rm incn}}\cr -\,P_{\rm incn}(V_{\rm incn}(t))\cr \dot{V}_{\rm incn}(t) = \frac{p_{\rm incn}(t)}{I_{\rm incn}} -R_{\rm inv}(P_{\rm incn}(V_{\rm incn}(t))\cr -\,P_{ht}(V_{ht}(t))) }$$

B. STATE EQUATIONS FOR THE MODEL

The following differential equations describe the behaviour of the model with the nonlinear arterial and nonlinear venous segments inserted:

$$\displaylines{\makeatletter\renewcommand\theequation{B.\arabic{equation}}\setcounter{equation}{0}\makeatother \dot{s}_{ht}(t) = \frac{p_{ht}(t)}{I_{ht}}\cr \dot{p}_{ht}(t) = F(t)-\frac{p_{ht}(t)\cdot R_{ht}}{I_{ht}}-A_{ht}\cdot P_{ht}(V_{ht}(t))\cr \dot{V}_{ht}(t) = \frac{p_{ht}(t)\cdot A_{ht}}{I_{ht}}+R_{\rm inv}(P_{\rm incn}(V_{\rm incn}(t)) \cr -\,P_{ht}(V_{ht}(t)))\quad -R_{\rm otv}(P_{ht}(V_{ht}(t)) \cr -\,P_{\rm otcn}(V_{\rm otcn}(t)))\cr \dot{V}_{\rm otcn}(t) = R_{\rm otv}(P_{ht}(V_{ht}(t))-P_{\rm otcn}(V_{\rm otcn}(t)))\cr \dot{p}_{\rm otcn}(t) = P_{\rm otcn}(V_{\rm otcn}(t))-\frac{p_{\rm otcn}(t)\cdot R_{\rm otcn}}{I_{\rm otcn}}-P_{a}(V_{ao}(t)) \cr \dot{V}_{ao}(t) = \frac{p_{\rm otcn}(t)}{I_{\rm otcn}}-\frac{p_{ao}(t)}{I_{ao}} }$$
figure 10

 

figure 11

 

figure 12

 

$$\displaylines{\makeatletter\renewcommand\theequation{B.\arabic{equation}}\setcounter{equation}{6}\makeatother \dot{p}_{ao}(t) = P_{ao}(V_{ao}(t))-\frac{p_{ao}\cdot R_{ao}}{I_{ao}}-P_{at}(V_{at}(t))\cr \dot{V}_{at}(t) = \frac{p_{ao}(t)}{I_{ao}}-\frac{p_{\rm pe}(t)}{I_{\rm pe}}\cr \dot{p}_{\rm pe}(t) = P_{at}(V_{at}(t))-\frac{R_{\rm pe}\cdot p_{\rm pe}(t)}{I_{\rm pe}}-P_{vn}(V_{vn})\cr \dot{V}_{vn}(t) = \frac{p_{\rm pe}(t)}{I_{\rm pe}}-R_{vn}(P_{vn}(V_{vn}(t))-P_{vc}(V_{vc}))\cr \dot{V}_{vc}(t) = R_{vn}(P_{vn}(V_{vn}(t))-P_{vc}(V_{vc}))-\frac{p_{\rm incn}(t)}{I_{\rm incn}} \cr \dot{p}_{\rm incn}(t) = P_{vc}(V_{vc}(t))-\frac{p_{\rm incn}(t)\cdot R_{\rm incn}}{I_{\rm incn}}-P_{\rm incn}(V_{\rm incn}(t)) \cr \dot{V}_{\rm incn}(t) = \frac{p_{\rm incn}(t)}{I_{\rm incn}}-R_{\rm inv}(P_{\rm incn}(V_{\rm incn}(t))-P_{ht}(V_{ht}(t))) }$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conlon, M.J., Russell, D.L. & Mussivand, T. Development of a Mathematical Model of the Human Circulatory System. Ann Biomed Eng 34, 1400–1413 (2006). https://doi.org/10.1007/s10439-006-9164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9164-y

Keywords

Navigation