Skip to main content
Log in

Nonlinear Dependence of Hydraulic Conductivity on Tissue Deformation During Intratumoral Infusion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Efficiency of intratumoral infusion for drug and gene delivery depends on intrinsic tissue structures as well as infusion-induced changes in these structures. To this end, we investigated effects of infusion pressure (P inf) and infusion-induced tissue deformation on infusion rate (Q) in three mouse tumor models (B16.F10, 4T1, and U87) and developed a poroelastic model for interpreting data and understanding mechanisms of fluid transport in tumors. The collagen concentrations in these tumors were 2.9±1.2, 12.2±0.9, and 18.1±3.5 μg/mg wet wt. of tissues, respectively. During the infusion, there existed a threshold infusion pressure (P t), below which fluid flow could not be initiated. The values of P t for these tumors were 7.36, 36.8, and 29.4 mmHg, respectively. Q was a bell-shaped function of P inf in 4T1 tumors but increased monotonically with increasing P inf in other tumors. These observations were consistent with results from numerical simulations based on the poroelastic model, suggesting that both the existence of P t and the nonlinear relationships between Q and P inf could be explained by infusion-induced tissue deformation that anisotropically affected the hydraulic conductivity of tissues. These results may be useful for further investigations of intratumoral infusion of drugs and genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.

Similar content being viewed by others

Abbreviations

EBA:

evans blue-labeled albumin

ECM:

extracellular matrix

GAG:

glycosaminoglycan

IFP:

interstitial fluid pressure

REFERENCES

  1. Barry, S. I., and G. K. Aldis. Comparison of models for flow induced deformation of soft biological tissue. J. Biomech. 23:647–654, 1990.

    Article  PubMed  CAS  Google Scholar 

  2. Barry, S. I., and G. K. Aldis. Flow-induced deformation from pressurized cavities in absorbing porous tissues. Bull. Math. Biol. 54:977–997, 1992.

    PubMed  CAS  Google Scholar 

  3. Basser, P. J. Interstitial pressure, volume, and flow during infusion into brain tissue. Microvasc. Res. 44:143–165, 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Bobo, R. H., D. W. Laske, A. Akbasak, P. F. Morrison, R. L. Dedrick, and E. H. Oldfield. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA. 91:2076–2080, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Boucher, Y., C. Brekken, P. A. Netti, L. T. Baxter, and R. K. Jain. Intratumoral infusion of fluid: estimation of hydraulic conductivity and implications for the delivery of therapeutic agents. Br. J. Cancer 78:1442–1448, 1998.

    PubMed  CAS  Google Scholar 

  6. Boucher, Y., and R. K. Jain. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52:5110–5114, 1992.

    PubMed  CAS  Google Scholar 

  7. Chen, M. Y., R. R. Lonser, P. F. Morrison, L. S. Governale, and E. H. Oldfield. Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J. Neurosurg. 90:315–320, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Dang, W., O. M. Colvin, H. Brem, and W. M. Saltzman. Covalent coupling of methotrexate to dextran enhances the penetration of cytotoxicity into a tissue-like matrix. Cancer Res. 54:1729–1735, 1994.

    PubMed  CAS  Google Scholar 

  9. Dillehay, L. E. Decreasing resistance during fast infusion of a subcutaneous tumor. Anticancer Res. 17:461–466, 1997.

    PubMed  CAS  Google Scholar 

  10. el-Kareh, A. W., S. L. Braunstein, and T. W. Secomb. Effect of cell arrangement and interstitial volume fraction on the diffusivity of monoclonal antibodies in tissue. Biophys. J. 64:1638–1646, 1993.

    PubMed  CAS  Google Scholar 

  11. El-Kareh, A. W., and T. W. Secomb. A theoretical model for intraperitoneal delivery of cisplatin and the effect of hyperthermia on drug penetration distance. Neoplasia. 6:117–127, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Fung, L. K., and W. M. Saltzman. Polymeric implants for cancer chemotherapy. Adv. Drug Delivery Rev. 26:209–230, 1997.

    Article  CAS  Google Scholar 

  13. Gu, W. Y., H. Yao, C. Y. Huang, and H. S. Cheung. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J. Biomech. 36:593–598, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Jain, R. K. Delivery of molecular and cellular medicine to solid tumors. Microcirculation 4:1–23, 1997.

    Article  PubMed  CAS  Google Scholar 

  15. Juweid, M., R. Neumann, C. Paik, M. J. Perez-Bacete, J. Sato, W. van Osdol, and J. N. Weinstein. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res. 52:5144–5153, 1992.

    PubMed  CAS  Google Scholar 

  16. Klanchar, M., and J. M. Tarbell. Modeling water flow through arterial tissue. Bull. Math. Biol. 49:651–669, 1987.

    PubMed  CAS  Google Scholar 

  17. Lai, W. M., and V. C. Mow. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17:111–123, 1980.

    PubMed  CAS  Google Scholar 

  18. Laske, D. W., R. J. Youle, and E. H. Oldfield. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat. Med. 3:1362–1368, 1997.

    Article  PubMed  CAS  Google Scholar 

  19. McGuire, S., and F. Yuan. Quantitative analysis of intratumoral infusion of color molecules. Am. J. Physiol. 281:H715–H721, 2001.

    CAS  Google Scholar 

  20. Milenic, D. E., T. Yokota, D. R. Filpula, M. A. Finkelman, S. W. Dodd, J. F. Wood, M. Whitlow, P. Snoy, and J. Schlom. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 51:6363–6371, 1991.

    PubMed  CAS  Google Scholar 

  21. Morrison, P. F., D. W. Laske, H. Bobo, E. H. Oldfield, and R. L. Dedrick. High-flow microinfusion: tissue penetration and pharmacodynamics. Am. J. Physiol. 266:R292–R305, 1994.

    PubMed  CAS  Google Scholar 

  22. Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak, and R. K. Jain. Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res. 55:5451–5458, 1995.

    PubMed  CAS  Google Scholar 

  23. Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak, and R. K. Jain. Macro- and microscopic fluid transport in living tissues: Application to solid tumors. AIChE J. 43:818–834, 1997.

    Article  CAS  Google Scholar 

  24. Netti, P. A., D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60:2497–2503, 2000.

    PubMed  CAS  Google Scholar 

  25. Netti, P. A., F. Fravascio, and R. K. Jain. Coupled macromolecular transport and gel mechanics: Poroviscoelastic approach. AIChE J. 49:1580–1596, 2003.

    Article  CAS  Google Scholar 

  26. Nicholson, C., and J. M. Phillips. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321:225–257, 1981.

    PubMed  CAS  Google Scholar 

  27. Parker, K. H., R. V. Mehta, and C. G. Caro. Steady flow in porous, elastically deformable materials. J. Appl. Mech. 54:794–800, 1987.

    Article  Google Scholar 

  28. Pluen, A., P. A. Netti, R. K. Jain, and D. A. Berk. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys. J. 77:542–552, 1999.

    Article  PubMed  CAS  Google Scholar 

  29. Ramanujan, S., A. Pluen, T. D. McKee, E. B. Brown, Y. Boucher, and R. K. Jain. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys. J. 83:1650–1660, 2002.

    PubMed  CAS  Google Scholar 

  30. Sarntinoranont, M., M. J. Iadarola, R. R. Lonser, and P. F. Morrison. Direct interstitial infusion of NK1-targeted neurotoxin into the spinal cord: a computational model. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R243–R254, 2003.

    PubMed  CAS  Google Scholar 

  31. Sarntinoranont, M., F. Rooney, and M. Ferrari. Interstitial stress and fluid pressure within a growing tumor. Ann. Biomed. Eng. 31:327–335, 2003.

    Article  PubMed  Google Scholar 

  32. Shea, L. D., E. Smiley, J. Bonadio, and D. J. Mooney. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551–554, 1999.

    Article  PubMed  CAS  Google Scholar 

  33. Truskey, G. A., F. Yuan, and D. F. Katz. Transport Phenomena in Biological Systems. Upper Saddle River, NJ: Pearson Prentice Hall, 2004, pp. Pages.

    Google Scholar 

  34. Wang, Y., S. Liu, C. Y. Li, and F. Yuan. A novel method for viral gene delivery in solid tumors. Cancer Res. 65:7541–7545, 2005.

    PubMed  CAS  Google Scholar 

  35. Wang, Y., Z. Yang, S. Liu, T. Kon, A. Krol, C. Y. Li, and F. Yuan. Characterisation of systemic dissemination of nonreplicating adenoviral vectors from tumours in local gene delivery. Br. J. Cancer 92:1414–1420, 2005.

    Article  PubMed  CAS  Google Scholar 

  36. Yao, H., and W. Y. Gu. Physical signals and solute transport in cartilage under dynamic unconfined compression: finite element analysis. Ann. Biomed. Eng. 32:380–390, 2004.

    Article  PubMed  Google Scholar 

  37. Yuan, F. Transvascular drug delivery in solid tumors. Semin. Rad. Oncol. 8:164–175, 1998.

    Article  CAS  Google Scholar 

  38. Yuan, F., A. Krol, and S. Tong. Available space and extracellular transport of macromolecules: Effects of pore size and connectedness. Ann. Biomed. Eng. 29:1150–1158, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Zaharoff, D. A., R. C. Barr, C. Y. Li, and F. Yuan. Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery. Gene. Ther. 9:1286–1290, 2002.

    Article  PubMed  CAS  Google Scholar 

  40. Zakaria, E. R., J. Lofthouse, and M. F. Flessner. In vivo hydraulic conductivity of muscle: effects of hydrostatic pressure. Am. J. Physiol. 273:H2774–H2782, 1997.

    CAS  Google Scholar 

  41. Zhang, X.-Y., J. Luck, M. W. Dewhirst, and F. Yuan. Interstitial hydraulic conductivity in a fibrosarcoma. Am. J. Physiol. 279:H2726–H2734, 2000.

    CAS  Google Scholar 

  42. Zhao, L., C. S. Samuel, G. W. Tregear, F. Beck, and E. M. Wintour. Collagen studies in late pregnant relaxin null mice. Biol. Reprod. 63:697–703, 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Ava Krol for tumor preparations. The work is supported in part by a grant from the National Science Foundation (BES-9984062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGuire, S., Zaharoff, D. & Yuan, F. Nonlinear Dependence of Hydraulic Conductivity on Tissue Deformation During Intratumoral Infusion. Ann Biomed Eng 34, 1173–1181 (2006). https://doi.org/10.1007/s10439-006-9136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9136-2

Keywords

Navigation