Skip to main content

Advertisement

Log in

Application of the Method of Fundamental Solutions to Potential-based Inverse Electrocardiography

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Potential-based inverse electrocardiography is a method for the noninvasive computation of epicardial potentials from measured body surface electrocardiographic data. From the computed epicardial potentials, epicardial electrograms and isochrones (activation sequences), as well as repolarization patterns can be constructed. We term this noninvasive procedure Electrocardiographic Imaging (ECGI). The method of choice for computing epicardial potentials has been the Boundary Element Method (BEM) which requires meshing the heart and torso surfaces and optimizing the mesh, a very time-consuming operation that requires manual editing. Moreover, it can introduce mesh-related artifacts in the reconstructed epicardial images. Here we introduce the application of a meshless method, the Method of Fundamental Solutions (MFS) to ECGI. This new approach that does not require meshing is evaluated on data from animal experiments and human studies, and compared to BEM. Results demonstrate similar accuracy, with the following advantages: 1. Elimination of meshing and manual mesh optimization processes, thereby enhancing automation and speeding the ECGI procedure. 2. Elimination of mesh-induced artifacts. 3. Elimination of complex singular integrals that must be carefully computed in BEM. 4. Simpler implementation. These properties of MFS enhance the practical application of ECGI as a clinical diagnostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

Similar content being viewed by others

References

  1. Atkinson, K. E., and D. Chien. Piecewise Polynomial collocation for boundary integral equations. SIAM J. Sci. Stat. Comput. 16:651–681, 1995.

    Article  Google Scholar 

  2. Barr, R. C., and M. S. Spach. Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ. Res. 42(5):661–675, 1978.

    PubMed  CAS  Google Scholar 

  3. Barr, R. C., and M. S. Spach. Inverse solutions directly in terms of potentials. In: The Theoretical Basis of Electrocardiography, edited by C. V. Nelson and D. B. Geselowitz. Oxford: Clarendon Press, 1976, pp. 294–304.

    Google Scholar 

  4. Batdorf, M., L. A. Freitag, and C. Ollivier-Gooch. Computational study of the effect of unstructured mesh quality on solution efficiency. Proc. 13th AIAA Computational Fluid Dynamics Conf.: 1888, 1997.

  5. Beer, G., and J. O. Watson. Introduction to Finite and Boundary Element Methods for Engineers. West Sussex: Wiley, 1992.

    Google Scholar 

  6. Belytschko, T., Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An overview and recent developments. Comput. Method. Appl. Mech. Eng. 139:3–47, 1996.

    Article  Google Scholar 

  7. Berger, J. R., and A. Karageorghis. The method of fundamental solutions for heat conduction in layered materials. Int. J. Numer. Methods Eng. 45(11):1681–1694, 1999.

    Article  Google Scholar 

  8. Berrier, K. L., D. C. Sorensen, and D. S. Khoury. Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter. IEEE Trans. Biomed. Eng. 51(3):507–515, 2004.

    Article  PubMed  Google Scholar 

  9. Blaszczyk, A. Formulations based on region-oriented charge simulation for electromagnetics. IEEE Trans. Magn. 36(4):701–704, 2000.

    Article  Google Scholar 

  10. Blaszczyk, A., and H. Steinbigler. Region-oriented charge simulation. IEEE Trans. Magn. 30(5):2924–2927, 1994.

    Article  Google Scholar 

  11. Bogomolny, A. Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22:644–669, 1985.

    Article  Google Scholar 

  12. Brebbia, C. A., J. C. F. Telles, and L. C. Wrobel. Boundary Element Techniques: Theory and Applications in Engineering. Berlin, Germany: Springer Verlag, 1984.

    Google Scholar 

  13. Brewer, M., L. Diachin, T. Leurent, and D. Melander. The mesquite mesh quality improvement toolkit. Proceedings, 12th International Meshing Roundtable: 239–250, 2003.

  14. Brooks, D. H., G. F. Ahmad, R. S. MacLeod, and G. M. Maratos. Inverse electrocardiography by simultaneous imposition of multiple constraints. IEEE Trans. Biomed. Eng. 46(1):3–18, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Burnes, J. E., B. Taccardi, P. R. Ershler, and Y. Rudy. Noninvasive electrocardiogram imaging of substrate and intramural ventricular tachycardia in infarcted hearts. J. Am. Coll. Cardiol. 38(7):2071–2078, 2001.

    Article  PubMed  CAS  Google Scholar 

  16. Burnes, J. E., B. Taccardi, and Y. Rudy. A noninvasive imaging modality for cardiac arrhythmias. Circulation 102(17):2152–2158, 2000.

    PubMed  CAS  Google Scholar 

  17. Carr, J. C., R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans. Reconstruction and representation of 3D objects with radial basis functions. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques 67–76, 2001.

  18. Carr, J. C., W. R. Fright, and R. K. Beatson. Surface interpolation with radial basis functions for medical imaging. IEEE Trans. Med. Imaging 16(1):96–107, 1997.

    Article  PubMed  CAS  Google Scholar 

  19. Chen, Y., and K. Atkinson. Solving a single layer integral equation on surface in R3. SIAM J. Num. Anal., Reports on Computational Mathematics #51, 1994.

  20. Cheng, L. K., J. M. Bodley, and A. J. Pullan. Effects of experimental and modeling errors on electrocardiographic inverse formulations. IEEE Trans. Biomed. Eng. 50(1):23–32, 2003.

    Article  PubMed  Google Scholar 

  21. Cheng, R. S. C. Deta-Trigonometric and Spline Methods using the Single-Layer Potential Representation. Ph.D. dissertation: University of Maryland, 1987.

  22. Christiansen, S., and P. C. Hansen. The effective condition number applied to error analysis of certain boundary collocation methods. J. Comput. Appl. Math. 54:15–36, 1994.

    Article  Google Scholar 

  23. Christiansen, S., and J. Saranen. The conditioning of some numerical methods for first kind integral equations. J. Comput. Appl. Math. 67:43–58, 1996.

    Article  Google Scholar 

  24. Colli-Franzone, P., L. Guerri, S. Tentoni, C. Viganotti, S. Baruffi, S. Spaggiari, and B. Taccardi. A mathematical procedure for solving the inverse problem of electrocardiography. Math. Biosci. 77:353–396, 1985.

    Article  Google Scholar 

  25. Durrer, D., R. T. van Dam, G. E. Freud, M. J. Janse, F. L. Meijler, and R. C. Arzbaecher. Total excitation of the isolated human heart. Circulation 41(6):899–912, 1970.

    PubMed  CAS  Google Scholar 

  26. Fairweather, G., A. Karageorghis, and P. A. Martin. The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements 27(7):759–769, 2003.

    Google Scholar 

  27. Fairweather, G., and A. Karageorghis. The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9:69–95, 1998.

    Article  Google Scholar 

  28. Fischer, G., B. Pfeifer, M. Seger, C. Hintermuller, F. Hanser, R. Modre, B. Tilg, T. Trieb, C. Kremser, F. X. Roithinger, and F. Hintringer. Computationally efficient noninvasive cardiac activation time imaging. Methods Inf. Med. 44(5):674–686, 2005.

    PubMed  CAS  Google Scholar 

  29. Franzone, P., B. Taccardi, and C. Viganotti. An approach to inverse calculation of epicardial potentials from body surface maps. Adv. Cardiol. 21:50–54, 1978.

    PubMed  CAS  Google Scholar 

  30. Freitag, L., T. Leurent, P. Knupp, and D. Melander. MESQUITE design: Issues in the development of a mesh quality improvement toolkit. Proceedings of the 8th Intl. Conference on Numerical Grid Generation in Computational Field Simulations: 159–168, 2002.

  31. Gelernter, H. L., and J. C. Swihart. A Mathematical-Physical Model of the Genesis of the Electrocardiogram. Biophys. J. 17:285–301, 1964.

    Article  Google Scholar 

  32. Ghanem, R. N., J. E. Burnes, A. L. Waldo, and Y. Rudy. Imaging dispersion of myocardial repolarization, II: noninvasive reconstruction of epicardial measures. Circulation 104(11):1306–1312, 2001.

    PubMed  CAS  Google Scholar 

  33. Ghanem, R. N., P. Jia, C. Ramanathan, K. Ryu, A. Markowitz, and Y. Rudy. Noninvasive electrocardiographic imaging (ECGI): comparison to intraoperative mapping in patients. Heart Rhythm 2(4):339–354, 2005.

    Article  PubMed  Google Scholar 

  34. Ghodrati, A., D. H. Brooks, G. Tadmor, B. Punske, and R. S. MacLeod. Wavefront-based inverse electrocardiography using an evolving curve state vector and phenomenological propagation and potential models. Int. J. Bioelectromagn. 7(2):210–213, 2005.

    Google Scholar 

  35. Ghosh, S., and Y. Rudy. Accuracy of quadratic versus linear interpolation in noninvasive Electrocardiographic Imaging (ECGI). Ann. Biomed. Eng. 33(9):1187–1201, 2005.

    Article  PubMed  Google Scholar 

  36. Golberg, M. A., and C. S. Chen. Discrete Projection Methods for Integral Equations. Southampton: Computational Mechanics Publications, 1996.

    Google Scholar 

  37. Golberg, M. A., and C. S. Chen. The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Boundary Integral Methods – Numerical and Mathematical Aspects, edited by M. A. Golberg. Southampton-Boston: Computational Mechanics Publications, 1998, pp. 103–176.

    Google Scholar 

  38. Golberg, M. A., C. S. Chen, and S. R. Karur. Improved multiquadric approximation for partial differential equations. Engin. Anal. Bound. Elem. 18:9–17, 1996.

    Article  Google Scholar 

  39. Green, L. S., B. Taccardi, P. R. Ershler, and R. L. Lux. Epicardial potential mapping. Effects of conducting media on isopotential and isochrone distributions. Circulation 84(6):2513–2521, 1991.

    PubMed  CAS  Google Scholar 

  40. Greensite, F. The temporal prior in bioelectromagnetic source imaging problems. IEEE Trans. Biomed. Eng. 50(10):1152–1159, 2003.

    Article  PubMed  Google Scholar 

  41. Hon, Y. C., and T. Wei. A fundamental solution method for inverse heat conduction problem. Eng. Anal. Bound. Elem. 28:489–495, 2004.

    Article  Google Scholar 

  42. Hon, Y. C., and T. Wei. Solving Cauchy problems of elliptic equations by the method of fundamental solutions. In: Boundary Elements XXVII, edited by A. Kassab, C. A. Brebbia, E. Divo and D. Poljak. Southampton-Boston: WIT Press, 2005, pp. 57–65.

    Google Scholar 

  43. Huiskamp, G., and F. Greensite. A new method for myocardial activation imaging. IEEE Trans. Biomed. Eng. 44(6):433–446, 1997.

    Article  PubMed  CAS  Google Scholar 

  44. Huiskamp, G., and A. van Oosterom. The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans. Biomed. Eng. 35(12):1047–1058, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Huiskamp, G., and A. van Oosterom. Tailored versus realistic geometry in the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng. 36(8):827–835, 1989.

    Article  PubMed  CAS  Google Scholar 

  46. Huiskamp, G. J., and A. van Oosterom. Heart position and orientation in forward and inverse electrocardiography. Med. Biol. Eng. Comput. 30(6):613–620, 1992.

    Article  PubMed  CAS  Google Scholar 

  47. Intini, A., R. N. Goldstein, P. Jia, C. Ramanathan, K. Ryu, B. Giannattasio, R. Gilkeson, B. S. Stambler, P. Brugada, W. G. Stevenson, Y. Rudy, and A. L. Waldo. Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete. Heart Rhythm 2(11):1250–1252, 2005.

    Article  PubMed  Google Scholar 

  48. Jia, P., B. Punske, B. Taccardi, and Y. Rudy. Electrophysiologic endocardial mapping from a noncontact nonexpandable catheter: a validation study of a geometry-based concept. J. Cardiovasc. Electrophysiol. 11(11):1238–1251, 2000.

    Article  PubMed  CAS  Google Scholar 

  49. Jia, P., C. Ramanathan, R. N. Ghanem, K. Ryu, N. Varma, and Y. Rudy. Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: Observation of variable electrophysiologic responses. Heart Rhythm 3(3):296–310, 2006.

    Article  PubMed  Google Scholar 

  50. Karageorghis, A., and G. Fairweather. The method of fundamental solutions for the numerical solution of the biharmonic equation. J. Comput. Phys. 69:435–459, 1987.

    Article  Google Scholar 

  51. Khoury, D. S., K. L. Berrier, S. M. Badruddin, and W. A. Zoghbi. Three-dimensional electrophysiological imaging of the intact canine left ventricle using a noncontact multielectrode cavitary probe: study of sinus, paced, and spontaneous premature beats. Circulation 97(4):399–409, 1998.

    PubMed  CAS  Google Scholar 

  52. Khoury, D. S., B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy. Reconstruction of endocardial potentials and activation sequences from intracavitary probe measurements. Localization of pacing sites and effects of myocardial structure. Circulation 91(3):845–863, 1995.

    PubMed  CAS  Google Scholar 

  53. Kythe, P. K. Fundamental Solutions for Differential Operators and Applications. Boston-Basel-Berlin: Birkhauser, 1996.

    Google Scholar 

  54. Malik, N. H. A review of the charge simulation method and its applications. IEEE Trans. Electr. Insul. 24(1):3–20, 1989.

    Article  Google Scholar 

  55. Mera, N. S. The method of fundamental solutions for the backward heat conduction problem. Inverse Probl. Sci. Eng. 13(1):65–78, 2005.

    Article  Google Scholar 

  56. Messinger-Rapport, B. J., and Y. Rudy. Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm. Circ Res 66(4):1023–1039, 1990.

    PubMed  CAS  Google Scholar 

  57. Messnarz, B., B. Tilg, R. Modre, G. Fischer, and F. Hanser. A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns. IEEE Trans. Biomed. Eng. 51(2):273–281, 2004.

    Article  PubMed  Google Scholar 

  58. Modre, R., B. Tilg, G. Fischer, F. Hanser, B. Messnarz, M. Seger, F. Hintringer, and F. X. Roithinger. Ventricular surface activation time imaging from electrocardiogram mapping data. Med. Biol. Eng. Comput. 42(2):146–150, 2004.

    Article  PubMed  CAS  Google Scholar 

  59. Modre, R., B. Tilg, G. Fischer, F. Hanser, B. Messnarz, M. Seger, M. F. Schocke, T. Berger, F. Hintringer, and F. X. Roithinger. Atrial noninvasive activation mapping of paced rhythm data. J. Cardiovasc. Electrophysiol. 14(7):712–719, 2003.

    Article  PubMed  Google Scholar 

  60. Modre, R., B. Tilg, G. Fischer, and P. Wach. Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data. IEEE Trans. Biomed. Eng. 49(10):1153–1161, 2002.

    Article  PubMed  Google Scholar 

  61. Oster, H. S., B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy. Electrocardiographic imaging: Noninvasive characterization of intramural myocardial activation from inverse-reconstructed epicardial potentials and electrograms. Circulation 97(15):1496–1507, 1998.

    PubMed  CAS  Google Scholar 

  62. Oster, H. S., B. Taccardi, R. L. Lux, P. R. Ershler, and Y. Rudy. Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circulation 96:1012–1024, 1997.

    PubMed  CAS  Google Scholar 

  63. Patridge, P. W., C. A. Brebbia, and L. C. Wrobel. The Dual Reciprocity Boundary Element Method. Southampton-Boston: Computational Mechanics Publications, 1992.

    Google Scholar 

  64. Plonsey, R., and R. C. Barr. Bioelectricity: a Quantitative Approach. New York: Plenum Press, 1988.

    Google Scholar 

  65. Ramanathan, C., R. N. Ghanem, P. Jia, K. Ryu, and Y. Rudy. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 10(4):422–428, 2004.

    Article  PubMed  CAS  Google Scholar 

  66. Ramanathan, C., P. Jia, R. Ghanem, D. Calvetti, and Y. Rudy. Noninvasive electrocardiographic imaging (ECGI): application of the generalized minimal residual (GMRes) method. Ann. Biomed. Eng. 31(8):981–994, 2003.

    Article  PubMed  Google Scholar 

  67. Ramanathan, C., P. Jia, R. N. Ghanem, K. Ryu, and Y. Rudy. Activation and repolarization of the normal human heart under complete physiological conditions. Proc. Natl. Acad. Sci., U.S.A. (PNAS) 103(16):6309–6314, 2006.

    Article  CAS  Google Scholar 

  68. Ramanathan, C., and Y. Rudy. Electrocardiographic imaging: I. Effect of torso inhomogeneities on body surface electrocardiographic potentials. J. Cardiovasc. Electrophysiol. 12(2):229–240, 2001.

    Article  PubMed  CAS  Google Scholar 

  69. Ramanathan, C., and Y. Rudy. Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones. J. Cardiovasc. Electrophysiol. 12(2):241–252, 2001.

    Article  PubMed  CAS  Google Scholar 

  70. Rudy, Y., and J. E. Burnes. Noninvasive electrocardiographic imaging (ECGI). Ann. Noninvasive Electrocardiol. 4:340–359, 1999.

    Google Scholar 

  71. Rudy, Y., and B. J. Messinger-Rapport. The inverse problem in electrocardiography: solutions in terms of epicardial potentials. Crit. Rev. Biomed. Eng. 16(3):215–268, 1988.

    PubMed  CAS  Google Scholar 

  72. Sainz, M., and R. Pajarola. Point-Based Rendering Techniques. Comput. Graph. 28:869–879, 2004.

    Article  Google Scholar 

  73. Sauter, S. A., and A. Krapp. On the effect of numerical integration in the Galerkin boundary element method. Numer. Math. 74:337–360, 1996.

    Article  Google Scholar 

  74. Taccardi, B., E. Macchi, R. Lux, P. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister. Effect of myocardial fiber direction on epicardial potentials. Circulation 90:3076–3090, 1994.

    PubMed  CAS  Google Scholar 

  75. Taden, A., L. Godinho, and C. S. Chen. Performance of the BEM, MFS and RBF collocation method in a 2.5 wave propagation analysis. In: Boundary Elements XXVII, edited by A. Kassab, C. A. Brebbia, E. Divo and D. Poljak. Southampton-Boston: WIT Press, 2005, pp. 143–153.

    Google Scholar 

  76. Tikhonov, A. N., and V. Y. Arsenin. Solution of Ill-Posed Problems. Washington DC: VH Winston & Sons, 1977.

    Google Scholar 

  77. Tilg, B., G. Fischer, R. Modre, F. Hanser, B. Messnarz, and F. X. Roithinger. Electrocardiographic imaging of atrial and ventricular electrical activation. Med. Image Anal. 7(3):391–398, 2003.

    Article  PubMed  Google Scholar 

  78. Tilg, B., G. Fischer, R. Modre, F. Hanser, B. Messnarz, M. Schocke, C. Kremser, T. Berger, F. Hintringer, and F. X. Roithinger. Model-based imaging of cardiac electrical excitation in humans. IEEE Trans. Med. Imaging 21(9):1031–1039, 2002.

    Article  PubMed  Google Scholar 

  79. Tilg, B., F. Hanser, R. Modre-Osprian, G. Fischer, B. Messnarz, T. Berger, F. Hintringer, O. Pachinger, and F. X. Roithinger. Clinical ECG mapping and imaging of cardiac electrical excitation. J. Electrocardiol. 35(Suppl):81–87, 2002.

    Article  PubMed  Google Scholar 

  80. Yamashita, Y. Inverse solution in electrocadiography: determining epicardial from body surface maps by using the finite element method. Jpn. Circ. J. 45:1312–1322, 1981.

    PubMed  CAS  Google Scholar 

  81. Yue, A. M., M. R. Franz, P. R. Roberts, and J. M. Morgan. Global endocardial electrical restitution in human right and left ventricles determined by noncontact mapping. J. Am. Coll. Cardiol. 46(6):1067–1075, 2005.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Professor C.S. Chen from University of Southern Mississippi for very useful advice regarding MFS theory and implementation. We thank Dr. Bruno Taccardi for the torso-tank experiments, conducted in his laboratory at the University of Utah. We would also like to acknowledge the assistance of L. Ciancibello in acquiring and transferring the CT imaging data and K. Ryu for his assistance in body surface potential mapping. Special thanks go to Dr. Ping Jia for helpful discussions. This study was supported by NIH-NHLBI Merit Award R37-HL-33343 and Grant R01-HL-49054 (to Yoram Rudy) and by a Whitaker Foundation Development Award. Yoram Rudy is the Fred Saigh distinguished professor at Washington University in St Louis. We appreciate the extensive reviews provided by the manuscript reviewers; they helped making this a better paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Rudy.

APPENDIX: FORMULATION OF MFS FOR LAPLACIAN OPERATOR

APPENDIX: FORMULATION OF MFS FOR LAPLACIAN OPERATOR

MFS has evolved from traditional boundary integral methods. Without forming a mesh, MFS uses a set of points to solve numerically partial differential equations. Details of this method can be found in the review article.37 The following Dirichlet boundary value problem is used to describe the theoretical formulation of MFS for the Laplacian operator:

$$\nabla ^2 u(x) = 0,\quad x \in \Omega$$
(a1)
$$u(x) = b(x),\quad \quad x \in \Gamma ,\quad \Gamma = \partial \Omega$$
(a2)

where \(\nabla ^2\) is the Laplace differential operator with a known fundamental solution \(f(r)\) in 3D space. \(u(x)\) is a potential function in a source-free domain \(\Omega\) and \(b(x)\) is the Dirichlet boundary condition. According to the definition of fundamental solution,27 the fundamental solution of the Laplace operator can be obtained by solving the following equation for \(f(r)\):

$$\nabla ^2 f(r) = \delta (r)$$
(a3)

where \(\delta (r)\) is the delta function, \(r = \left\| {x - y} \right\|\) is the 3D Euclidean distance between point x and point y, \(x,y \in \Omega\). \(f(r)\) in two dimensions (2D) and three dimensions (3D) is:53

$$f(r) = \left\{ {\begin{array}{*{20}l}{ - \displaystyle\frac{1}{{2\pi }}\ln \,r,\quad 2D} \\{\displaystyle\frac{1}{{4\pi r}},\quad 3D} \end{array}} \right.$$
(a4)

Both BEM and MFS use the same Green's function \(f(r) = \frac{1}{{4\pi r}}\) in 3D space. However BEM integrates this function locally over elements of the real surface and requires computation of complex singular integrals. By placing the fictitious source points outside the domain of interest, MFS employs global integration and avoids the need to compute complex singular integrals.

The traditional boundary integral approach is to represent the solution \(u(x)\) in term of a double layer potential:36,63

$$u(x) = \int_\Gamma {\frac{{\partial f(\left\| {x - y} \right\|)}}{{\partial n}}} e(y)dy,\quad x \in \Omega ,\quad y \in \Gamma$$
(a5)

where, n is the outward pointing normal at point y, \(e(y)\) is an unknown density function. Equivalently a single layer potential representation of \(u(x)\) can be used19,36

$$u(x) = \int_\Gamma {f(\left\| {x - y} \right\|)\,e(y)\,dy},\quad x \in \Omega ,\quad y \in \Gamma$$
(a6)

The source density distribution \(e(y)\) can be determined by solving the following equation under the assumption of a double layer:

$$\int_\Gamma {\frac{{\partial f\left( {\left\| {x - y} \right\|} \right)}}{{\partial n}}\,} e(y)\,dy = b(x),\quad x \in \Gamma ,\quad y \in \Gamma$$
(a7)

or under the assumption of a single layer:

$$\int_\Gamma {f\left( {\left\| {x - y} \right\|} \right)\,} e(y)\,dy = b(x),\quad x \in \Gamma ,\quad y \in \Gamma$$
(a8)

However, singular integrals are involved in both cases. To alleviate this difficulty, the following formulation, similar to the single layer potential in (a6), has been used:50

$$u(x) = \int_{\hat \Gamma } {f\left( {\left\| {x - y} \right\|} \right)\,} e(y)\,dy,\quad x \in \Omega ,\quad y \in \hat \Gamma$$
(a9)

where the auxiliary boundary \(\hat \Gamma\) is the surface of the auxiliary domain \(\hat \Omega\) containing the domain \(\Omega\) (Fig. 1).

Two different approaches for selecting \(\hat \Gamma\) and its fictitious source points y are described in the literature:36 static configuration and dynamic configuration. In static configuration, the fictitious boundaries are fixed and pre-selected. The method is easy to implement and use in practical applications. For dynamic configuration, the location of fictitious boundaries is determined together with the solution50 by a complex, time-consuming nonlinear optimization procedure, which greatly limits its practical application. Since the geometry of the 3D domain between the torso surface and the heart surface is similar for all humans, the static approach is the method of choice for ECGI application.

Because \(f\left( {\left\| {x - y} \right\|} \right)\) is the fundamental solution of the Laplace operator [Eq. (a3)], (a9) satisfies the differential Eq. (a1). Therefore we need only to apply the boundary condition (a2):

$$\int_{\hat \Gamma } {f\left( {\left\| {x - y} \right\|} \right)\,} e(y)\,dy = b(x),\quad x \in \Gamma ,\quad y \in \hat \Gamma \quad$$
(a10)

where the source density distribution \(e(y)\), \(y \in \hat \Gamma\), is to be determined. Once the source density is determined, Eq. (a1) subject to (a2) is solved. The analytic integral representation of (a10) implies that there is an infinite number of source density points on \(\hat \Gamma\). In order to apply numerical methods to the solution, it is necessary to discretize \(e(y)\). Assume \(\psi _i (y), i = 1,2, \ldots \infty\) is a complete set of functions on \(\hat \Gamma\), \(e(y)\) can be approximated by:

$$e(y) = \sum\limits_{i = 1}^\infty {c_i \psi _i (y)} ,\quad y \in \hat \Gamma$$
(a11)

Substituting (a11) into (a10) and satisfying the boundary conditions at the N boundary points \(x_k \in \Gamma ,\quad k = 1,2, \ldots N;\) we have

$$\sum\limits_{i = 1}^\infty {c_i \int_{\hat \Gamma } {f\left( {\left\| {x_k - y} \right\|} \right)\psi _i (y)\,dy} } = b(x_k ),\\ 1 \le k \le N,\quad y \in \hat \Gamma$$
(a12)

Since the fictitious boundary \(\hat \Gamma\) is located outside the physical domain (Fig. 1), the integrand \(f\left( {\left\| {x_k - y} \right\|} \right)\) is nonsingular and standard quadrature rules can be applied giving

$$\int_{\hat \Gamma } {f( {\| {x_k - y} \|} )\psi _i (y)\,dy} \approx \sum\limits_{j = 1}^M {w_j f( {\| {x_k - y_j } \|} )\psi _i (y_j )} ,\\ y_j \in \hat \Gamma ,\quad j = 1,2, \ldots ,M$$
(a13)

where \(w_j\) is a weight factor and M is the number of fictitious nodes on the fictitious boundary \(\hat \Gamma\).37

From (a12) and (a13), we obtain:

$$\sum\limits_{i = 1}^\infty {c_i \sum\limits_{j = 1}^M {w_j f( {\| {x_k - y_j } \|} )\psi _i (y_j )} }\\ = \sum\limits_{j = 1}^M {w_j \left[ {\sum\limits_{i = 1}^\infty {c_i } \psi _i (y_j )} \right]} f( {\| {x_k - y_j } \|} ) = b(x_k ),\\ 1 \le k \le N.$$
(a14)

Then:

$$\sum\limits_{j = 1}^M {a_j f( {\| {x_k - y_j } \|} ) = b(x_k )} ,\quad 1 \le k \le N.$$
(a15)

where:

$$a_j = w_j \sum\limits_{i = 1}^\infty {c_i } \psi _i (y_j )$$
(a16)

For completeness,11 a constant \(a_0\) is added to (a15):

$$a_0 + \sum\limits_{j = 1}^M {a_j f( {\| {x_k - y_j } \|} ) = b(x_k )} ,\quad 1 \le k \le N.$$
(a17)

After Eq. (a17) is solved for \(a_0\) and \(a_j (j = 1,2, \ldots ,M)\), the solution to (a1) can be approximated by:

$$u_a (x) = a_0 + \sum\limits_{j = 1}^M {a_j f( {\| {x - y_j } \|} ),\quad x \in \Omega ,\quad y_j \in \hat \Gamma }$$
(a18)

The approximate solution \(u_a\) to Eq. (a1) is represented by a linear combination of fundamental solutions of the governing equation with the singularities \(y_j ,j = 1,2, \ldots ,M\) placed outside the domain of the problem.

MFS is applicable not only to the above boundary value problem, but also to the Cauchy problem42 that underlies ECGI. In this problem, both Dirichlet and Neumann boundary conditions are given only on portion of the boundary:42

$$\nabla ^2 u(x) = 0,\quad x \in \Omega\vspace*{-12pt}$$
(a1)
$${\rm Dirichlet}\;{\rm conditions}:\; u(x) = b(x),\quad x \in \Gamma _1 ,\\ \Gamma _1 \subset \Gamma = \partial \Omega$$
(a19)
$${\rm Neumann}\;{\rm conditions}: \frac{\partial }{{\partial n}}u(x) = i(x),\quad x \in \Gamma _1 ,\\ \Gamma _1 \subset \Gamma = \partial \Omega$$
(a20)

For the Neumann condition (a20), the gradient at point \(x\)is along the outward normal to the boundary at that point. Similar to Eq. (a17), MFS can be used to discretize the Dirichlet and Neumann boundary conditions (Eqs. (a19) and (a20)) as follows:

$$a_0 + \sum\limits_{j = 1}^M {a_j f( {\| {x_k - y_j } \|} ) = b(x_k )} ,\quad x_k \in \Gamma _1 ,\\ k = 1,2, \ldots ,N,\quad y_j \in \hat \Gamma .$$
(a21)
$$\sum\limits_{j = 1}^M {a_j \frac{\partial }{{\partial n}}f( {\| {x_k - y_j } \|} ) = i(x_k )} ,\quad x_k \in \Gamma _1 ,\\ k = 1,2, \ldots ,N,\quad y_j \in \hat \Gamma .$$
(a22)

After solving for the coefficients \((a_0 ,a_j ,j = 1,2, \ldots ,M)\), subject to the boundary conditions (a19) and (a20), the solution to (a1) can be approximated using Eq. (a18).

Convergence analysis of MFS for Laplace's equation was conducted by Cheng.21 When the problem boundary and boundary conditions are smooth functions, MFS converges exponentially to the solution of the problem. This analysis was conducted for 2D; Golberg and Chen36 provided arguments that similar convergence properties exist in 3D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Rudy, Y. Application of the Method of Fundamental Solutions to Potential-based Inverse Electrocardiography. Ann Biomed Eng 34, 1272–1288 (2006). https://doi.org/10.1007/s10439-006-9131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9131-7

Keywords

Navigation