Skip to main content
Log in

Computational Approach to Estimating the Effects of Blood Properties on Changes in Intra-stent Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study various blood rheological assumptions are numerically investigated for the hemodynamic properties of intra-stent flow. Non-newtonian blood properties have never been implemented in blood coronary stented flow investigation, although its effects appear essential for a correct estimation and distribution of wall shear stress (WSS) exerted by the fluid on the internal vessel surface. Our numerical model is based on a full 3D stent mesh. Rigid wall and stationary inflow conditions are applied. Newtonian behavior, non-newtonian model based on Carreau-Yasuda relation and a characteristic newtonian value defined with flow representative parameters are introduced in this research. Non-newtonian flow generates an alteration of near wall viscosity norms compared to newtonian. Maximal WSS values are located in the center part of stent pattern structure and minimal values are focused on the proximal stent wire surface. A flow rate increase emphasizes fluid perturbations, and generates a WSS rise except for interstrut area. Nevertheless, a local quantitative analysis discloses an underestimation of WSS for modelisation using a newtonian blood flow, with clinical consequence of overestimate restenosis risk area. Characteristic viscosity introduction appears to present a useful option compared to rheological modelisation based on experimental data, with computer time gain and relevant results for quantitative and qualitative WSS determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

Similar content being viewed by others

REFERENCES

  1. Andreas, O. F., P. W. Walsh, and J. E. Moore. Computational Fluid dynamics and stent design. Artif. Org. 26:614–621, 2002.

    Article  Google Scholar 

  2. Armaly, B. F., F. Durst, B. Schonung, and J. C. F. Pereira. Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127:473–496, 1983.

    Article  Google Scholar 

  3. Ashby, D. T., G. Dangas, R. Mehran, A. J. Lansky, R. Narasimaiah, I. Iakovou, S. Polena, L. F. Satler, A. D. Pichard, K. M. Kent, G. W. Stone, and M. B. Leon. Comparison of clinical outcomes using stents versus no stents after percutaneous coronary intervention for proximal left anterior descending versus proximal right and left circumflex coronary arteries. Am. J. Cardiol. 89:1162–1166, 2002.

    Article  PubMed  Google Scholar 

  4. Bao, X., C. Lu, and J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arterioscler Thromb. Vasc. Biol. 19:996–1003, 1999.

    PubMed  CAS  Google Scholar 

  5. Benard, N., D. Coisne, E. Donal, and R. Perrault. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress. J. Biomech. 36:991–998, 2003.

    Article  PubMed  Google Scholar 

  6. Berry, J. L., A. Santamarina, J. E. Moore, S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2003.

    Article  Google Scholar 

  7. Berthier, B., R. Bouzerar, and C. Legallais. Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. J. Biomech. 35:1347–1356, 2002.

    Article  PubMed  CAS  Google Scholar 

  8. Briguori, C., C. Sarais, P. Pagnotta, F. Liistro, M. Montorfano, A. Chieffo, F. Sgura, N. Corvaja, R. Albiero, G. Stankovic, C. Toutoutzas, E. Bonizzoni, C. Di Mario, and A. Colombo. In-stent restenosis in small coronary arteries: impact of strut thickness. J. Am. Coll. Cardiol. 40:403–409, 2002.

    Article  PubMed  Google Scholar 

  9. Carlier, S. G., L. C. A. Van Damme, C. P. Blommerde, J. J. Wentzel et al. Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation: Inhibition through reduction of inflammation? Circulation 107:2741–2746, 2003.

    Article  PubMed  Google Scholar 

  10. Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Arterial wall shear and distribution of early atheroma man. Nature 223:1159–1161, 1969.

    Article  PubMed  CAS  Google Scholar 

  11. Caro, C. G., T. J. Pedley, and R. C. Schrotter. Mechanics of the circulation. Oxford University Press, pp. 527, 1978.

  12. Chien, S. Hemorheology in clinical medicine. Clin. Hemorheol. 2:137–142, 1982.

    Google Scholar 

  13. Chien, S., S. Usami, R. J. Dellenback, and M. I. Gregersen. Shear dependent deformation of erythrocytes in rheology of human blood. Am. J. Physiol. 219:136–142, 1970.

    PubMed  CAS  Google Scholar 

  14. Gijsen, F. J. H., E. Allanic, F. N. Van de Vosse, and J. D. Janssen. The influence of the non-newtonian properties of blood on the flow in large arteries: Unsteady flow in a 90° curved tube. J. Biomech. 32:705–713, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Gijsen, F. J. H., F. N. Van de Vosse, and J. D. Janssen. The influence of the non-newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation. J. Biomech. 32:601–608, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Hsieh, H. J., N. Q. Li, and J. A. Frangos. Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am. J. Physiol. 260:H642–H646, 1991.

    PubMed  CAS  Google Scholar 

  17. Johnston, B. M., P. R. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37:709–720, 2004.

    Article  PubMed  Google Scholar 

  18. Kastrati, A., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schuhlen, M. Seyfarth, C. Schmitt, R. Blasini, F. J. Neumann, and A. Schomig. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Kyeleswarapu, K. K. Evaluation of Continuum Models for Characterizing the Constitutive Behavior of Blood, Ph. D. thesis, Deparment of Mechanical Engineering, University of Pittsburgh, 1996.

  20. Ladisa, J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten et al. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31:972–980, 2003.

    Article  PubMed  Google Scholar 

  21. Ladisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, S. H. Audi, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Stent design properties and deployment ratio influence on indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004.

    Article  PubMed  Google Scholar 

  22. Lally, C., P. J. Prendergast, and F. Dolan. Biomechanical aspects of cardiovascular stenting and restenosis. Proceeding of Endocoronary biomechanics and restenosis 2003, Paris.

  23. Lee, B. K., J. Y. Lee, B. K. Hong, B. E. Park, D. S. Kim, D. Y. Kim, Y. H. Cho, S. J. Yoon, Y. W. Yoon, H. M. Kwon, H. W. Roh, I. Kim, H. W. Park, S. M. Han, M. T. Cho, S. H. Suh, and H. S. Kim. Hemodynamic analysis of coronary circulation in angulated coronary stenosis following stenting. Yonsei Med. J. 43:590–600, 2002.

    PubMed  Google Scholar 

  24. Lentner, C. Heart and Circulation, Geigy Scientific Tables, Vol. 5. CIBA-GEIGY, Basle, Switzerland. 1990, 280 pp.

  25. Liu, S. Q., D. Tang, C. Tieche, and P. K. Alkema. Pattern formation of vascular smooth muscle cells subject to nonuniform fluid shear stress: mediation by gradient of cell density. Am. J. Physiol. Heart Circ. Physiol. 285:H1072–H1080, 2003.

    PubMed  CAS  Google Scholar 

  26. Malek, M., and S. Izumo. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endhothelium. Am. J. Physiol. Cell Physiol. 263:389–396, 1992.

    Google Scholar 

  27. Moore, J. E. and J. L. Berry. Fluid and solid mechanical implications of vascular stenting. Ann. Biomed. Eng. 30:498–508, 2002.

    Article  PubMed  Google Scholar 

  28. Moses, J. W., M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O’Shaughnessy, R. P. Caputo, D. J. Kereiakes, D. O. Williams, P. S. Teirstein, J. L. Jaeger, and R. E. Kuntz. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–23, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Moses, J. W., R. Mehran, E. Nikolsky, J. M. Lasala, W. Corey, G. Albin, C. Hirsch, M. B. Leon, M. E. Russell, S. G. Ellis, and G. W. Stone. Outcomes with the paclitaxel-eluting stent in patients with acute coronary syndromes: analysis from the TAXUS-IV trial. J. Am. Coll. Cardiol. 45:1165–71, 2005.

    Article  PubMed  CAS  Google Scholar 

  30. Neofytou P. Comparison of blood rheological models for physiological flow simulation. Biorheology 41:693–714, 2005.

    Google Scholar 

  31. Noris, M., M. Morigi, R. Donadelli, S. Aiello, M. Foppolo, M. Todeschini, S. Orisio, G. Remuzzi, and A. Remuzzi. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ. Res. 76:536–543, 1995.

    PubMed  CAS  Google Scholar 

  32. O’Callaghan, S., M. Walsh, and T. McGloughlin. Numerical modeling of newtonian and non-newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis. Med. Eng. Phys. 28:70–74, 2005.

    Article  Google Scholar 

  33. Pache, J., A. Dibra, J. Mehilli, J. Dirschinger, A. Schomig, and A. Kastrati. Drug-eluting stents compared with thin-strut bare stents for the reduction of restenosis: a prospective, randomized trial. Eur. Heart. J. 26:1262–8, 2005.

    Article  PubMed  Google Scholar 

  34. Peacock, J., S. Hankins, T. Jones, and R. Lutz. Flow instabilities induced by coronary artery stents. J. Biomech. 28:17–26, 1995.

    Article  PubMed  CAS  Google Scholar 

  35. Perktold, K., and G. Rappitsch. Computer simulation of blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.

    Article  PubMed  CAS  Google Scholar 

  36. Prendergast, P. J., C. Lally, S. Daly, A. J. Reid et al. Analysis of prolapse in cardiovascular stents: A constitutive equation for vascular tissue and finite-element modeling. J. Biomech. Eng. 125:692–699, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. Rogers, C., D. Y. Tseng, J. C. Squire, and E. R. Edelman. Balloon-artery interactions during stent placement, a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378–383, 1999.

    PubMed  CAS  Google Scholar 

  38. Schwartz, R. S., K. C. Huber, J. G. Murphy et al. Restenosis and proportional neointimal response to coronary injury: results in a porcine model. J. Am. Coll.Cardiol. 19:267–274, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Seo, T., L. G. Schchter, and A. I. Barakat. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann. Biomed. Eng. 33:444–456, 2005.

    Article  PubMed  Google Scholar 

  40. Stone, P. H., A. U. Coskun, S. Kinlay, M. E. Clark et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodelling, and in-stent restenosis in humans: In vivo 6-month follow-up study. Circulation 108:438–444, 2003.

    Article  PubMed  Google Scholar 

  41. Stone, G. W., S. G. Ellis, D. A. Cox, J. Hermiller, C. O’Shaughnessy, J. T. Mann, M. Turco, R. Caputo, P. Bergin, J. Greenberg, J. J. Popma, and M. E. Russell. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 350:221–31, 2004.

    Article  PubMed  CAS  Google Scholar 

  42. Sullivan, T. M., S. D. Ainsworth, E. M. Langan, S. Taylor et al. Effect of endovascular stent strut geometry on vascular injury, myointimal hyperplasia, and restenosis. J. Vasc. Surg. 36:143–149, 2002.

    Article  PubMed  Google Scholar 

  43. Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone et al. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102–3106, 1997.

    PubMed  CAS  Google Scholar 

  44. Thiriet, M., G. Martin-borret, and F. Hecht. Ecoulement rheofluidifiant dans un coude et une bifurcation plane symétrique. Apllication à l’ecoulement sanguin dans la grande circulation. J.Phys III 6:529–542, 1996.

    Article  Google Scholar 

  45. Thurston, G. B. Rheological parameters for the viscosity and thixotropy of blood. Biorheology 16:149–162, 1972.

    Google Scholar 

  46. Thurston, G. B. Viscoelastic properties of blood and blood analogs, Advances in Hemodynamics and Hemorheology, edited by T. C. Howe, JAI Press, pp. 1–30, 1996.

  47. Traub, O. and B. C. Berk. Laminar shear stress, Mechanisms by which endothelial cells transducer an atheroprotective force, Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998.

    CAS  Google Scholar 

  48. Vernhet, H., R. Demaria, J. M. Juan, M. C. Oliva-Lauraire, J. P. Senac, and M. Dauzat. Changes in wall mechanics after endovascular stenting in the rabbit aorta: comparison of three stent designs. Am. J. Roentgenol. 176:803–807, 2001.

    CAS  Google Scholar 

  49. White, C. R., M. Haidekker, X. Bao, and J. A. Frangos. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation 103:2508–2513, 2001.

    PubMed  CAS  Google Scholar 

  50. Zhu, H., J. J. Warner, T. R. Gehrig, and M. H. Friedman. Comparison of coronary artery dynamics pre- and post-stenting. J. Biomech. 36:689–697, 2003.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the CINES, (Center Informatique Nationale de l’Education Supérieure, Montpellier, France) for making their IT resources and technical facilities available to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Benard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benard, N., Perrault, R. & Coisne, D. Computational Approach to Estimating the Effects of Blood Properties on Changes in Intra-stent Flow. Ann Biomed Eng 34, 1259–1271 (2006). https://doi.org/10.1007/s10439-006-9123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9123-7

Keywords

Navigation