Skip to main content
Log in

Development of an Advanced Hyperspectral Imaging (HSI) System with Applications for Cancer Detection

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An advanced hyper-spectral imaging (HSI) system has been developed having obvious applications for cancer detection. This HSI system is based on state-of-the-art liquid crystal tunable filter technology coupled to an endoscope. The goal of this unique HSI technology being developed is to obtain spatially resolved images of the slight differences in luminescent properties of malignant versus non-malignant tissues. In this report, the development of the instrument is discussed and the capability of the instrument is demonstrated by observing mouse carcinomas in-vivo. It is shown that the instrument successfully distinguishes between normal and malignant mouse skin. It is hoped that the results of this study will lead to advances in the optical diagnosis of cancer in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.

Similar content being viewed by others

REFERENCES

  1. Andersson-Engels, S. J., J. Johansson, K. Svanberg, and S. Svanberg. Fluorescence imaging and point measurement of tissue: Applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue. Photochem. Photobiol. 53:807–812, 1991.

    PubMed  CAS  Google Scholar 

  2. Bunting, C. A., P. G. Carolan, M. J. Forrest, P. G. Noonan, and A. C. Sharpe. CCD camera as a multichannel analyzer for the spectral and azimuthal resolution of Fabry-Perot fringes. Rev. Sci. Instrum. 59:1488–1490, 1988.

    Article  Google Scholar 

  3. Delaney, P. M., M. R. Harris, and R. G. King. Fiberoptic laser-scanning confocal microscope suitable for fluorescence imaging. Appl. Opt. 33:573–577, 1994.

    Google Scholar 

  4. Gao, G. H., and Z. Lin. Acoustooptic super multispectral imaging. Appl. Opt. 32:3081–3086, 1993.

    Article  Google Scholar 

  5. Gebhart, S. C., W. Lin, and A. Mahadevan-Jansen, Characterization of a spectral imaging system. Presentation at SPIE Photonics West, 2003.

  6. Goujon, D., M. Zellwegger, A. Radu, P. Grosjean, B. Weber, H. van den Bergh, P. Monnier, and G. Wagnieres. In vivo autofluorescence imaging of early cancers in the human tracheobroncial tree with a spectrally optimized system. J. Biomed. Opt. 8(1):17–25, 2003.

    Article  PubMed  Google Scholar 

  7. Heintzelman, D., U. Utzinger, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, and R. Richards-Kortum. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem. Photobiol. 72:103–113, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Hsu, E. R., A. M. Gillenwater, R. R. Richards-Kortum, A. Simple. Inexpensive fluorescence spectroscopy system and contrast agent for detection of the molecular changes associated with oral cancer in living tissue. Appl. Spectrosc. 59:1166–1173, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Irene, G., B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld. Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus. Gastroenterology 120:1620–1629, 2001.

    Article  Google Scholar 

  10. Jaganath, R., C. Angeletti, R. Levenson, and D. L. Rimm. Diagnostic classification of urothelial cells in urine cytology specimens using exclusively spectral information. Cancer 102(3):186–191, 2004.

    Article  PubMed  Google Scholar 

  11. Levenson, R. M., P. J. Cronin, and N. Harvey. Spectral imaging and biomedicine: New devices, new approaches. AIPR 105–111, 2002.

  12. Martin, M. E., M. B. Wabuyele, M. Panjehpour, B. F. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh. A Dual-modality hyperspectral imaging system capable of simultaneous fluorescence and reflectance imaging. Med. Eng. Phys. 28(2):149–55, 2006.

    Article  PubMed  Google Scholar 

  13. Martin, M. E., M. B. Wabuyele, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, T. Moyers, S. G. Song, and T. Vo-Dinh. Dual modality fluorescence and reflectance hyperspectral imaging: Principle and applications. Proc. SPIE 5692:133–139, 2005.

    Article  Google Scholar 

  14. Panjehpour, M., B. Overholt, T. Vo-Dinh, R. C. Haggitt, D. M. Edwards, and F. P. Buckley III. Endoscopic fluorescence detection of high-grade dysplasia in Barrett's esophagus. Gastroenterology 111:93–101, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Panjehpour, M., C. E. Julius, M. N. Phan, T. Vo-Dinh, and S. Overholt. Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers. Lasers Surg. Med. 31:367–373, 2002.

    Article  PubMed  Google Scholar 

  16. Stratis, D. N., K. L. Eland, J. C. Carter, S. J. Tomlinson, and S. M. Angel. Comparison of acousto-optic and liquid crystal tunable filters for laser-induced breakdown spectroscopy. App. Spectrosc. 55(8):999–1004. 1999.

    Article  Google Scholar 

  17. Sung, K. C., Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum. Combined fluorescence and reflectance spectroscopy for in vivo detection of cervical pre-cancer. J. Biomed. Opt. 10(2):2–31, 2005.

    Google Scholar 

  18. Vo-Dinh, T. Biomedical Photonics Handbook, New York: CRC Press, 2003.

    Google Scholar 

  19. Vo-Dinh, T., M. Panjehpour, B. F. Overholt, and P. Buckley III. Laser-induced differential fluorescence for cancer diagnosis without biopsy. Appl. Spectrosc. 51(1):58–63, 1997.

    Article  CAS  Google Scholar 

  20. Vo-Dinh, T., M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley III, and R. Sneed. In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices. Lasers Surg. Med. 16:41–47, 1995.

    Article  PubMed  CAS  Google Scholar 

  21. Vo-Dinh, T., D. L. Stokes, M. Wabuyele, M. E. Martin, J. M. Song, R. Jagannathan, E. Michaud, R. J. Lee, and X. Pan. A hyperspectral imaging system for in vivo optical diagnostics. IEEE Eng. Med. Biol. 23(5):40–49, 2004.

    Article  Google Scholar 

  22. Wachman, E. S., W. Niu, and D. L. Farkas. AOTF microscope for imaging with increased speed and spectral versatility. Biophy. J. 73(3):1215–1222, 1997.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dr. Steven Kennel for providing the mice used in this study. The authors would also like to thank Dr. Roberto Lenarduzzi for his assistance with LabView programming. This work was supported by funding from the National Institute of Health under grant number RO1 CA88787-01 and by the U.S Department of Energy (DOE) Office of Chemical and Biological National Security and the DOE Office of Biological and Environmental Research, under contract DEAC05-000OR22725 with UT-Battelle. M. E. Martin, M. B. Wabuyele, Kui Chen, and Paul Kasili are supported by appointments to the Oak Ridge National Laboratory Postdoctoral Research Program administered jointly by the Oak Ridge Institute for Science and Education and Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Vo-Dinh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M.E., Wabuyele, M.B., Chen, K. et al. Development of an Advanced Hyperspectral Imaging (HSI) System with Applications for Cancer Detection. Ann Biomed Eng 34, 1061–1068 (2006). https://doi.org/10.1007/s10439-006-9121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9121-9

Keywords

Navigation