Skip to main content

Advertisement

Log in

Cardiac Hemodynamics, Coronary Circulation and Interventional Cardiology

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Microcirculation is the functional end of the coronary circulation and it plays a key role in the regulation of coronary blood flow, both on the local and global scales. A good understanding of its function under physiological and pathophysiological conditions is crucial but, because of its micro-scale, access to this part of the coronary circulation is extremely difficult and requires a considerable amount of innovation and new technologies. Dynamics of the coronary circulation provide the true vehicle by which blood supply reaches the myocardium- coronary vasculature is only the conducting component of that vehicle. It is highly unlikely that the pulsatile nature of the flow, the capacitance of the conducting vessels and the constant pounding of coronary vasculature by surrounding tissue are not part of the design, regulation, and function of the coronary circulation. Interventions, whether to assess or to correct coronary stenosis, continue to be the main clinical avenue to dealing with coronary heart disease. Clinical decisions rely heavily on the ability to determine the true morphology of an occlusive lesion, to predict the future course of that lesion and to assess the functional toll on coronary blood supply which it will inflict at each stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abizaid, A., G. S. Mintz, A. D. Pichard, K. M. Kent, L. F. Satler, C. L. Walsh, J. J. Popma, and M. B. Leon. Clinical, intravascular ultrasound, and quantitative angiographic determinants of the coronary flow reserve before and after percutaneous transluminal coronary angioplasty. Am. J. Cardiol. 82:423–428, 1998.

    Article  Google Scholar 

  2. Ambrose, J. A., M. A. Tannenbaum, D. Alexopoulos, C. E. Hjemdahl-Monsen, J. Leavy, M. Weiss, S. Borrico, R. Gorlin, and V. Fuster. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol. 12:56–62, 1988.

    Google Scholar 

  3. Anderson, H. V., G. S. Roubin, P. P. Leimgruber, W. R. Cox, J. S. Douglas, Jr., S. B. King, 3rd, and A. R. Gruentzig. Measurement of transtenotic pressure gradient during percutaneous transluminal coronary angioplasty. Circulation 73:1223–1230, 1986.

    Google Scholar 

  4. Austin, R. E., Jr., N. G. Smedira, T. M. Squiers, and J. I. Hoffman. Influence of cardiac contraction and coronary vasomotor tone on regional myocardial blood flow. Am. J. Physiol. 266:H2542–H2553, 1994.

    Google Scholar 

  5. Baroldi, G. Diseases of the coronary artery. In: Cardiovascular Pathology, edited by M. D. Silver. Baltimore: University Park Press, 1983.

    Google Scholar 

  6. Bech, G. J., B. De Bruyne, N. H. Pijls, E. D. de Muinck, J. C. Hoorntje, J. Escaned, P. R. Stella, E. Boersma, J. Bartunek, J. J. Koolen, and W. Wijns. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 103:2928–2934, 2001.

    Google Scholar 

  7. Beyar, R., and S. Sideman. Time-dependent coronary blood flow distribution in left ventricular wall. Am. J. Physiol. 252:H417–H433, 1987.

    Google Scholar 

  8. Burke, A. P., A. Farb, G. T. Malcom, Y. H. Liang, J. Smialek, and R. Virmani. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med. 336:1276–1282, 1997.

    Google Scholar 

  9. Canty, J. M., Jr., F. J. Klocke, and R. E. Mates. Characterization of capacitance-free pressure flow relations during single diastoles using an RC model with pressure dependent parameters. Circ. Res. 60:273–282, 1987.

    Google Scholar 

  10. Cornelissen, A. J., J. Dankelman, E. VanBavel, and J. A. Spaan. Balance between myogenic, flow- dependent, and metabolic flow control in coronary arterial tree: A model study. Am. J. Physiol. 282: H2224–H2237, 2002.

    Google Scholar 

  11. Davis, M. J. Microvascular control of capillary pressure during increases in local arterial and venous pressure. Am. J. Physiol. 254:H772–H784, 1988.

    Google Scholar 

  12. Farb, A., A. P. Burke, A. L. Tang, T. Y. Liang, P. Mannan, J. Smialek, and R. Virmani. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93:1354–1363, 1996.

    Google Scholar 

  13. Ferrari, M., B. Schnell, G. S. Werner, and H. R. Figulla. Safety of deferring angioplasty in patients with normal coronary flow velocity reserve. J. Am. Coll. Cardiol. 33:82–87, 1999.

    Google Scholar 

  14. Fukai, T., R. J. Folz, U. Landmesser, D. G. Harrison. Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc. Res. 55:239–249, 2002.

    Article  Google Scholar 

  15. Fung, Y. C. Biodynamics: Circulation. New York: Springer-Verlag, 1984.

    Google Scholar 

  16. Fung, Y. C. Mechanical properties of heart muscle cells in directions orthogonal to active tensile force. In Biomechanics. Circulation 2:485–489, 1997.

    Google Scholar 

  17. Glagov, S., E. Weisenberg, and C. K. Zarins. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316:1371–1375, 1987.

    Article  Google Scholar 

  18. Goto, M., E. VanBavel, M. J. Giezeman, and J. A. Spaan. Vasodilatory effect of pulsatile pressure on coronary resistance vessels. Circ. Res. 79:1039–1045, 1996.

    Google Scholar 

  19. Gould, K., K. Kelley, and E. Bolson. Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation 66:930–937, 1982.

    Google Scholar 

  20. Gould, K. L., K. Lipscomb, and G. W. Hamilton. Physiologic basis for assessing critical coronary stenosis: Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am. J. Cardiol. 33:87–94, 1974.

    Google Scholar 

  21. Gregg, D. E. Coronary Circulation in Health and Disease. Philadelphia: Lea& Febiger, 1950.

    Google Scholar 

  22. Griintzig, A. R., A. Senning, and W. E. Siegenthaler. Nonoperative dilatation of coronary artery stenosis. N. Engl. J. Med. 301:61–68, 1979.

    Google Scholar 

  23. Hartley, C., and J. Cole. An ultrasonic pulsed Doppler system for measuring blood flow in small vessels. J. Appl. Physiol. 37:626, 1974.

    Google Scholar 

  24. Hiramatsu, O., M. Goto, T. Yada, A. Kimura, Y. Chiba, H. Tachibana, Y. Ogasawara, K. Tsujioka, and F. Kajiya. In vivo observations of the intramural arterioles and venules in beating canine hearts. J. Physiol. 509:619–628, 1998.

    Article  Google Scholar 

  25. Hodgson, J. M., K. G. Reddy, R. Suneja, R. N. Nair, E. J. Lesnefsky, and H. M. Sheehan. Intracoronary ultrasound imaging: Correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J. Am. Coll. Cardiol. 21:35–44, 1993.

    Article  Google Scholar 

  26. Hoffman, J. I., and J. A. Spaan. Pressure-flow relations in coronary circulation. Physiol. Rev. 70:331–390, 1990.

    Google Scholar 

  27. Judd, R. M., and R. E. Mates. Coronary input impedance is constant during systole and diastole. Am. J. Physiol. 260:H1841–H1851, 1991.

    Google Scholar 

  28. Judd, R. M., D. A. Redberg, and R. E. Mates. Diastolic coronary resistance and capacitance are independent of the duration of diastole. Am. J. Physiol. 260:H943–H952, 1991.

    Google Scholar 

  29. Kajiya, F., O. Hiramatsu, M. Goto, Y. Ogasawara, Mechanical characteristics of coronary circulation. J. Mech. Med. Biol. 1:67–77, 2001.

    Google Scholar 

  30. Kajiya, F., G. A. Klassen, J. A. E. Spaan, and J. I. E. Hoffman. Coronary Circulation: Basic Mechanism and Clinical Relevance. Tokyo: Springer-Verlag, 1990.

    Google Scholar 

  31. Kajiya, F., K. Tsujioka, M. Goto, Y. Wada, X. L. Chen, M. Nakai, S. Tadaoka, O. Hiramatsu, Y. Ogasawara, K. Mito. Functional characteristics of intramyocardial capacitance vessels during diastole in the dog. Circ. Res. 58:476–485, 1986.

    Google Scholar 

  32. Kajiya, F., T. Yada, A. Kimura, O. Hiramatsu, M. Goto, Y. Ogasawara, and K. Tsujioka. Endocardial coronary microcirculation of the beating heart. Adv. Exp. Med. Biol. 346:173–180, 1993.

    Google Scholar 

  33. Kassab, G. S., C. A. Rider, N. J. Tang, Y. C. Fung, and C. M. Bloor. Morphometry of pig coronary arterial trees. Am. J. Physiol. 265:H350–H365, 1993.

    Google Scholar 

  34. Kern, M. J. Coronary physiology revisited: practical insights from the cardiac catheterization laboratory. Circulation 101:1344–1351, 2000.

    Google Scholar 

  35. Klocke, F. J., R. E. Mates, J. M. Canty, and A. K. Ellis. Coronary pressure-flow relationships: controversial issues and probable implications. Circ. Res. 56:310–323, 1985.

    Google Scholar 

  36. Klocke, F. J. Measurements of coronary flow reserve: Defining pathophysiology versus making decisions about patient care. Circulation 76:1183–1189, 1987.

    Google Scholar 

  37. Komaru, T., H. Kanatsuka, and K. Shirato. Coronary microcirculation: Physiology and pharmacology. Pharmacol. Ther. 86:217–261, 2000.

    Article  Google Scholar 

  38. Kresh, J. Y., M. Fox, S. K. Brockman, and A. Noordergraaf. Model-based analysis of transmural vessel impedance and myocardial circulation dynamics. Am. J. Physiol. 258:H262–H276, 1990.

    Google Scholar 

  39. Kuo, L., M. J. Davis, and W. M. Chilian. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am. J. Physiol. 255: H1558–H1562, 1988.

    Google Scholar 

  40. Kuo, L., F. Arko, W. M. Chilian, and M. J. Davis. Coronary venular responses to flow and pressure. Circ. Res. 72:607–615, 1993.

    Google Scholar 

  41. Kuo, L., W. M. Chilian, and M. J. Davis. Coronary arteriolar myogenic response is independent of endothelium. Circ. Res. 66:860–866, 1990.

    Google Scholar 

  42. Kuo, L., M. J. Davis, and W. M. Chilian. Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol. 259:H1063–H1070, 1990.

    Google Scholar 

  43. Lee, J., and G. W. Schmid-Schobein. Biomechanics of skeletal muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formation. Ann. Biomed. Eng. 23:226–246, 1995.

    Google Scholar 

  44. Leesar, M. A., T. Abdul-Baki, N. I. Akkus, A. Sharma, T. Kannan, and R. Bolli. Use of fractional flow reserve versus stress perfusion scintigraphy after unstable angina. Effect on duration of hospitalization, cost, procedural characteristics, and clinical outcome. J. Am. Coll. Cardiol. 41:1115–1121, 2003.

    Article  Google Scholar 

  45. Liao, J. C., and L. Kuo. Interaction between adenosine and flow-induced dilation in coronary microvascular network. Am. J. Physiol. 272:H1571–H1581, 1997.

    Google Scholar 

  46. Little, W. C., M. Constantinescu, R. J. Applegate, M. A. Kutcher, M. T. Burrows, F. R. Kahl, and W. P. Santamore. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78:1157–1166. 1988.

    Google Scholar 

  47. Marcus, M. L. The Coronary Circulation in Health and Disease. New York: McGraw-Hill Book Company, 1983.

    Google Scholar 

  48. Matsumoto, T., H. Tachibana, T. Asano, M. Takemoto, Y. Ogasawara, K. Umetani, and F. Kajiya. Pattern differences between distributions of microregional myocardial flows in crystalloid- and blood-perfused rat hearts. Am. J. Physiol. 286:H1331–H1338, 2004.

    Google Scholar 

  49. Meuwissen, M., R. J. de Winter, S. A. Chamuleau, M. Heijne, K. T. Koch, A. van den Berg, J. P. van Straalen, M. Bax, C. E. Schorborgh, D. Kearney, G. T. Sanders, J. G. Tijssen, and J. J. Piek. Value of C-reactive protein in patients with stable angina pectoris, coronary narrowing (30% to 70%), and normal fractional flow reserve. Am. J. Cardiol. 92:702–705, 2003.

    Article  Google Scholar 

  50. Donohue, T. J., D. D. Miller, R. G. Bach, C. Tron, T. Wolford, E. A. Caracciolo, F. V. Aguirre, L. T. Younis, B. R. Chaitman, and M. J. Kern. Correlation of pharmacological 99mTc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographycally intermediate coronary artery stenoses. Circulation 89:2150–2160, 1994.

    Google Scholar 

  51. Miller, F. J. Jr., K. C. Dellsperger, and D. D. Gutterman. Myogenic constriction of human coronary arterioles. Am. J. Physiol. 273:H257–H264, 1997.

    Google Scholar 

  52. Mintz, G. S., S. E. Nissen, W. D. Anderson, S. R. Bailey, R. Erbel, P. J. Fitzgerald, F. J. Pinto, K. Rosenfield, R. J. Siegel, E. M. Tuzcu, and P. G. Yock. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (FVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiol. 37(5):1478–1492, 2001.

    Article  Google Scholar 

  53. Mori, H., E. Tanaka, K. Hyodo, M. Uddin Mohammed, T. Sekka, K. Ito, Y. Shinozaki, A. Tanaka, H. Nakazawa, S. Abe, S. Handa, M. Kubota, K. Tanioka, K. Umetani, and M. Ando. Synchrotron microangiography reveals configurational changes and to-and-fro flow in intramyocardial vessels. Am. J. Physiol. 276(2 Pt 2):H429–H437, 1999.

    Google Scholar 

  54. Nishioka, T., A. M. Amanullah, H. Luo, H. Berglund, C. J. Kim, T. Nagai, N. Hakamata, S. Katsushika, A. Uehata, B. Takase, K. Isojima, D. S. Berman, and R. J. Siegel. Clinical validation of intravascular ultrasound imaging for assessment of coronary stenosis severity: comparison with stress myocardial perfusion imaging. J. Am. Coll. Cardiol. 33(7):1870–1878, 1999.

    Article  Google Scholar 

  55. Nissen, S., and P. Yock. Intravascular Ultrasound. Novel pathophysiological insights and current clinical applications. Circulation 103:604–616, 2001.

    Google Scholar 

  56. Osborn, M. J. Sudden cardiac death: A. Mechanisms, incidence, and prevention of sudden cardiac death. In: Mayo Clinic Practice of Cardiology, edited by E. R. Giuliani, B. J. Gersh, M. D. McGoon, D. L. Hayes, and H. V. Schaff. St Louis: Mosby, 1996.

    Google Scholar 

  57. Pijls, N. H., B. De Bruyne, K. Peels, P. H. Van Der Voort, H. J. Bonnier, J. Bartunek, and J. J. Koolen. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N. Engl. J. Med. 334(26):1703–1708, 1996.

    Article  Google Scholar 

  58. Popp, R., I. Fleming, and R. Busse. Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: A modulator of arterial compliance. Circ. Res. 82:696–703, 1998.

    Google Scholar 

  59. Proudfit, W. L., E. K. Shirey, and F. M. Sones Jr. Selective cine coronary arteriography. Correlation with clinical findings in 1000 patients. Circulation 33:901–910, 1966.

    Google Scholar 

  60. Recchia, F. A., H. Senzaki, A. Saeki, B. J. Byrne, and D. A. Kass. Pulse pressure-related changes in coronary flow in vivo are modulated by nitric oxide and adenosine. Circ. Res. 79:849–856, 1996.

    Google Scholar 

  61. Riedel, C. H., S.-C. Chuah, M. Zamir, and E. L. Ritman. Accurate segmentation for quantitative analysis of vascular trees in 3D micro-CT images. Proc SPIE Medical Imaging: Physiology and Function from Multidimensional Images, 4683:256–265, 2002.

    Google Scholar 

  62. Rothman, M. T., D. S. Bairn, J. B. Simpson, and D. C. Harrison. Coronary hemodynamics during percutaneous transluminal coronary angioplasty. Am J Cardiol, 49:1615–1622, 1982.

    Article  Google Scholar 

  63. Rubanyi, G. M., J. C. Romero, and P. M. Vanhoutte. Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 250:H1145–H1149, 1986.

    Google Scholar 

  64. Schlichting, H. Boundary Layer Theory. New York: McGraw-Hill, 1979.

    MATH  Google Scholar 

  65. Sorop, O., J. A. Spaan, and T. E. Sweeney. Effect of steady versus oscillating flow on porcine coronary arterioles: Involvement of NO and superoxide anion. Circ. Res. 92:1344–1351, 2003.

    Article  Google Scholar 

  66. Spaan, J. A. E. Coronary Blood Flow. Dordrecht: Kluwer Academic Publishers, 1991.

    Google Scholar 

  67. Spaan, J. A. E. Structure and function of the coronary arterial tree. In: Coronary Blood Flow: Mechanics, Distribution and Control, edited by J. A. E. Spaan. Boston: Kluwer Academic Publishers, 1991, pp. 37–67.

    Google Scholar 

  68. Sugawara, M. Stenosis: Theoretical background. In: Blood Flow in the Heart and Large Vessels, edited by M. Sugawara, F. Kajiya, A. Kitabatake, and H. Matsuo. Tokyo-Berlin-New York: Springer-Verlag, 1989, p. 91.

    Google Scholar 

  69. Taylor, M. G. The input impedance of an assembly of randomly branching tubes. Biophys. J. 6:29–51, 1966.

    Google Scholar 

  70. Topol, E. J., S. G. Ellis, D. M. Cosgrove, E. R. Bates, D. W. Muller, N. J. Schork, M. A. Schork, and F. D. Loop. Analysis of coronary angioplasty practice in the United States with an insurance-claims database. Circulation 87:1489–1497, 1993.

    Google Scholar 

  71. Topol, E. J., and S. E. Nissen. Our preocupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342, 1995.

    Google Scholar 

  72. Toyota, E., K. Fujimoto, Y. Ogasawara, T. Kajita, F. Shigeto, T. Matsumoto, M. Goto, and F. Kajiya. Dynamic changes in three-dimensional architecture and vascular volume of transmural coronary microvasculature between diastolic- and systolic-arrested rat hearts. Circulation 105:621–626, 2002.

    Article  Google Scholar 

  73. Toyota, E., R. Koshida, N. Hattan, and W. M. Chilian. Regulation of the coronary vasomotor tone: What we know and where we need to go. J. Nucl. Cardiol. 8:599–605, 2001.

    Article  Google Scholar 

  74. Tune, J. D., K. N. Richmond, M. W. Gorman, and E. O. Feigl. Control of coronary blood flow during exercise. Exp. Biol. Med. 227(4):238–250, 2002.

    Google Scholar 

  75. Virmani, R., F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb. Vasc. Biol. 20(5):1262–1275. 2000.

    Google Scholar 

  76. White, C. W., C. B. Wright, D. B. Doty, L. F. Hiratza, C. L. Eastham, D. G. Harrison, and M. L. Marcus. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N. Engl. J. Med. 310:819–824, 1984.

    Article  Google Scholar 

  77. Willerson, J. T., L. D. Hillis, and L. M. Buja. Ischemic Heart Disease. Clinical and Pathological Aspects. New York: Raven Press, 1982.

    Google Scholar 

  78. Wilson, R. F., D. E. Laughlin, P. H. Ackell, R. F. Wilson, D. E. Laughlin, P. H. Ackell, W. M. Chilian, M. D. Holida, C. J. Hartley, M. L. Armstrong, M. L. Marcus, C. W. White. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 72:82. 1985.

    Google Scholar 

  79. Womersley, J. R. Oscillatory motion of a viscous liquid in a thin-walled elastic tube—I: The linear approximation for long waves, Phil. Mag. 46:199–221, 1955.

    MathSciNet  MATH  Google Scholar 

  80. Wusten, B., D. D. Buss, H. Deist, and W. Schaper. Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res. Cardiol. 72:636–650, 1977.

    Google Scholar 

  81. Yada, T., O. Hiramatsu, A. Kimura, M. Goto, Y. Ogasawara, K. Tsujioka, S. Yamamori, K. Ohno, H. Hosaka, and F. Kajiya. In vivo observation of subendocardial micro vessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ. Res. 72:939–946, 1993.

    Google Scholar 

  82. Yock, P. G., and D. T. Linker. Intravascular ultrasound. Looking below the surface of vascular disease. Circulation 81(5):1715–1718, 1990.

    Google Scholar 

  83. Yu, K. C., A. P. Ritman, A. P. Kiraly, S. Y. Wan, M. Zamir, and W. E. Higgins. Toward reliable multi-generational analysis of anatomical trees in 3D high-resolution CT images. Proc SPIE Medical Imaging: Physiology and Function: Methods, Systems, and Applications, 5031:178–186, 2003.

    Google Scholar 

  84. Zamir, M. Mechanics of blood supply to the heart: wave reflection effects in a right coronary artery. Proceedings of the Royal Society B265:439–444, 1998.

    Google Scholar 

  85. Zamir, M., and M. D. Silver. Morpho-functional anatomy of the human coronary arteries with reference to myocardial ischemia. Can. J. Cardiol. 1:363–372, 1985.

    Google Scholar 

  86. Zamir, M. Tree structure and branching characteristics of the right coronary artery in a right-dominant heart. Can. J. Cardiol. 12(6):593–599, 1996.

    Google Scholar 

  87. Zamir, M. The Physics of Pulsatile Flow. New York: Springer-Verlag, 2000.

    MATH  Google Scholar 

  88. Zhou, Y., G. S. Kassab, and S. Molloi. On the design of the coronary arterial tree: A generalization of Murray's law. Phys. Med. Biol. 44:2929–2945, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Kajiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajiya, F., Zamir, M. & Carlier, S. Cardiac Hemodynamics, Coronary Circulation and Interventional Cardiology. Ann Biomed Eng 33, 1728–1734 (2005). https://doi.org/10.1007/s10439-005-8777-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8777-x

Keywords

Navigation