Skip to main content
Log in

A General Framework for Characterizing Studies of Brain Interface Technology

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The development of brain interface (BI) technology continues to attract researchers with a wide range of backgrounds and expertise. Though the BI community is committed to accurate and objective evaluation of methods, systems, and technology, the very diversity of the methods and terminology used in the field hinders understanding and impairs technology cross-fertilization and cross-group validation of findings. Underlying this dilemma is a lack of common perspective and language. As seen in our previous works in this area, our approach to remedy this problem is to propose language in the form of taxonomy and functional models. Our intent is to document and validate our best thinking in this area and publish a perspective that will stimulate discussion. We encourage others to do the same with the belief that focused discussion on language issues will accelerate the inherently slow natural evolution of language selection and thus alleviate related problems. In this work, we propose a theoretical framework for describing BI-technology-related studies. The proposed framework is based on the theoretical concepts and terminology from classical science, assistive technology development, human–computer interaction, and previous BI-related works. Using a representative set of studies from the literature, the proposed BI study framework was shown to be complete and appropriate perspective for thoroughly characterizing a BI study. We have also demonstrated that this BI study framework is useful for (1) objectively reviewing existing BI study designs and results, (2) comparing designs and results of multiple BI studies, (3) designing new studies or objectively reporting BI study results, and (4) facilitating intra- and inter-group communication and the education of new researchers. As such, it forms a sound and appropriate basis for community discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allison, B. Z., and J. A. Pineda. ERPs evoked by different matrix sizes: Implications for a brain computer interface (BCI) system. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):110–113, 2003.

    Article  Google Scholar 

  2. Bailey, R. W. Human Performance Engineering. Englewood Cliffs, NJ: Prentice-Hall, 1989.

    Google Scholar 

  3. Baker, B. Using images to generate speech. Proceedings of the IEEE Biomedical Conference, Fort Worth, Texas, 1986

  4. Bayliss, J. D. Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):113–116, 2003.

    Article  MathSciNet  Google Scholar 

  5. Birch, G. E., Z. Bozorgzadeh, and S. G. Mason. Initial on-line evaluation of the LF-ASD brain–computer interface with able-bodied and spinal-cord subjects using imagined voluntary motor potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1), 2002.

  6. Blankertz, B., G. Dornhege, C. Schäfer, R. Krepki, J. Kolmorgen, K. R. Müller, V. Kunzmann, F. Losch, and G. Curio. Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis, IEEE 2003.

  7. Cincotti, F., D. Mattia, C. Babiloni, F. Carducci, S. Salinari, L. Bianchi, M. G. Marciani, and F. Babiloni. The use of EEG modifications due to motor imagery for brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):131–133, 2003.

    Article  Google Scholar 

  8. Cook, A. M., and S. M. Hussey. Assistive Technologies—Principles and Practice, 2nd ed. St. Louis: Mosby, 2002.

  9. Creswell, J. W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, Sage Publications Inc., London, 2003.

  10. Curran, E., P. Sykacek, M. Stokes, S. J. Roberts, W. Penny, I. Johnsrude, and A. M. Owen. Cognitive taskes for driving a brain–computer interface system: A pilot study. IEEE Trans. Neural Syst. Rehabil. Eng. 12(1):48–54, 2004.

    Article  Google Scholar 

  11. Delorme, A., and S. Makeig. EEG changes accompanying learned regulation of 12-Hz EEG activity. IEEE Trans. Rehabil. Eng. (in press).

  12. Dix, A. J., J. E. Finlay, G. D. Abowd, and R. Beale. Human–Computer Interaction. London: Prentic Hall Europe, 1998.

  13. Donchin, E., K. M. Spencer, and R. Wijesinghe. The mental prosthesis: Assessing the speed of a P300-based brain–computer interface. IEEE Trans. Rehabil. Eng. 8(2):174–179, 2000.

    Article  Google Scholar 

  14. Enabling America—Assessing the Role of Rehabilitation Science and Engineering. Washington, DC: National Academy Press, 1997.

  15. Flather, M., H. Aston, and R. Stables. Handbook of Clinical Trials. London, UK: ReMedica Publishing, 2001.

  16. Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics Principles and Practice, 2nd ed. New York: Addison-Wesley Publishing Inc., 1990.

  17. Gao, X., D. Xu, M. Cheng, and S. Gao. A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):137–140, 2003.

    Google Scholar 

  18. Garrett, D., D. A. Peterson, C. W. Anderson, and M. H. Thaut. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):141–144, 2003.

    Article  Google Scholar 

  19. Hix, D., and H. R. Hartson. Developing User Interfaces—Ensuring Usability Through Produce & Process. New York: John Wiley and Sons, 1993.

    Google Scholar 

  20. Kennedy, P. R., R. A. Bakay, M. M. Moore, K. Adams, and J. Goldwaithe. Direct control of a computer from the human central nervous system. IEEE Trans. Rehabil. Eng. 8(2):198–202, 2000.

    Article  Google Scholar 

  21. King, T. W. Assistive Technology—Essential Human Factors. Needham Heights: Allyn & Bacon, 1999.

  22. Kipke, D. R., R. J. Vetter, J. C. Williams, and J. F. Hetke. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):151–155, 2003.

    Article  Google Scholar 

  23. Kronegg, J., S. Voloshynovskiy, and T. Pun. Brin-Computer INterface model: Upper-capacity bound, signal-to-noise ratio estimation, and optimal number of symbols. Technical Report # 04.03—Computer Vision Group, Computing Science Center, University of Geneva, 2004.

  24. Kubler, A., K. Schmidt, L. G. Cohen, M. Lotze, S. Winter, T. Hinterberger, and N. Birbaumer. Modulation of slow cortical potentials by transcranial magnetic stimulation in humans. Neurosci. Lett. 324(3):205–208, 2002.

    Google Scholar 

  25. Levine, S. P., J. E. Huggins, S. L. Bement, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith. A direct brain interface based on event-related potentials. IEEE Trans. Rehabil. Eng. 8(2):180–185, 2000.

    Article  Google Scholar 

  26. Mason, S. G., A. Bashashati, M. Fatourechi, and G. E. Birch. Conceptual models for brain-interface technology design. http://www.braininterface.org/publishedlinks/BIDesignFramework.htm, 2005.

  27. Mason, S. G., and G. E. Birch. Temporal control paradigms for direct brain interfaces—Rethinking the definition of asynchronous and synchronous. To be published in Proceeding of HCI International, Las Vegas, USA, 2005.

  28. Mason, S. G., and G. E. Birch. A brain-controlled switch for asynchronous control applications. IEEE Trans. Biomed. Eng. 47(10):1297–1307, 2000.

    Article  Google Scholar 

  29. Mason, S. G., and G. E. Birch. A general framework for brain–computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1):70–85, 2003.

    Article  Google Scholar 

  30. Mason, S. G., M. M. Moore, and G. E. Birch. Designing pointing devices using brain–computer interface technology. Proceedings of IEEE 1st International Conference on Neural Engineering, Capri, Italy, 2003.

  31. McFarland, D. J., W. A. Sarnacki, and J. R. Wolpaw. Brain–computer interface (BCI) operation: Optimizing information transfer rates. Biol. Psychol. 63(3):237–251, 2003.

    Article  Google Scholar 

  32. Millan, J. R., J. Mourino, M. Franze, F. Cincotti, M. Varsta, J. Heikkonen, and F. Babilioni. A local neural classifier for the recognition of EEG patterns associated to mental tasks. IEEE Trans. Neural Netw. 13(3):678–686, 2003.

    Google Scholar 

  33. Montgomery, D. C. Design and Analysis of Experiments, 5th ed., John Wiley and Sons, N.Y., 2003.

    Google Scholar 

  34. Moore, M. M. Real world applications for brain–computer interface technology. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):162–165, 2003.

    Article  Google Scholar 

  35. Moore, M. M., S. G. Mason, and G. E. Birch. Analyzing trends in brain interface technology: A method to compare studies accepted for publication (July 2005) in IEEE Trans. Biomed. Eng.

  36. Neumann, N., T. Hinterberger, J. Kaiser, U. Leins, N. Birbaumer, and A. Kubler. Automatic processing of self-regulation of slow cortical potentials: Evidence from brain–computer communication in paralysed patients. Clin. Neurophysiol. 115(3):628–635, 2004.

    Article  Google Scholar 

  37. Neumann, N., A. Kubler, J. Kaiser, T. Hinterberger, and N. Birbaumer. Conscious perception of brain states: Mental strategies for brain–computer communication. Neuropsychologia 41(8):1028–1036, 2003.

    Article  Google Scholar 

  38. Nicolelis, M. A. L. Brain–machine interfaces to restore motor function and probe neural circuits. Nat. Rev. Neurosci. 4(5):417–422, 2003.

    Article  Google Scholar 

  39. Nielsen, J. Usability Engineering. Orlando, Florida: AP Professional, 2003.

  40. Norman, K. L. The Psychology of Menu Selection: Designing Cognitive Control at the Human/Computer Interface. Norwood, NJ: Ablex Publishing Corp., 1991.

  41. Obermaier, B., G. R. Muller, and G. Pfurtscheller. Virtual keyboard controlled by spontaneous EEG activity. IEEE Trans. Neural Syst. Rehabil. Eng. 11(4):422–426, 2003.

    Article  Google Scholar 

  42. Omrod, J. E. Human Learning, 2nd ed. Englewood Cliffs, NJ: Merrill Prentice Hall, 1995.

    Google Scholar 

  43. Piantadosi, S. Clinical Trials: A Methodologic Perspective. New York: Wiley-Interscience, 1997.

  44. Scherer, R., G. R. Muller, C. Neuper, B. Graimann, and G. Pfurtscheller. An asynchronously controlled EEG-based virtual keyboard: Improvement of the spelling rate. IEEE Trans. Biomed. Eng. 51(6):979–984, 2004.

    Article  Google Scholar 

  45. Schlogl, A., C. Keinrath, R. Scherer, and G. Pfurtscheller. Information transfer of an EEG-based brain–computer interface. IEEE, 2003.

  46. Serruya, M., N. Hatsopoulos, M. Fellows, L. Paninski, and J. P. Donoghue. Robustness of neuroprosthetic decoding algorithms. Biol. Cybern. 88(3):219–228, 2003.

    Article  Google Scholar 

  47. Shadish, W. R., T. D. Cook, and D. T. Campbell. Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Boston, MA: Houghton Mifflin Company, 2002.

  48. Shneiderman, B. Designing the User Interface—Strategies for Effective Human–Computer Interaction, 3rd ed. New York: Addison-Wesley Longman Inc., 1998.

  49. Small Clinical Trials—Issues and Challenges. Washington, DC: National Academy Press, 2001.

  50. Taylor, D. M., S. I. H. Tillery, and A. B. Schwartz. Information conveyed through brain-control: Cursor versus robot. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):195–199, 2003.

    Article  Google Scholar 

  51. Trejo, L. J., K. R. Wheeler, C. C. Jorgensen, R. Rosipal, S. T. Clanton, B. Matthews, A. D. Hibbs, R. Matthews, and M. Krupka. Multimodal neuroelectric interface development. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):199–204, 2003.

    Article  Google Scholar 

  52. Trochim, W. The Research Methods Knowledge Base. Cincinnati, OH: Atomic Dog Publishing, 2001.

  53. Vaughan, T., W. J. Heetderks, L. J. Trejo, W. Z. Rymer, M. Wienrich, M. M. Moore, A. Kubler, B. H. Dobkin, N. Birbaumer, E. Donchin, E. W. Wolpaw, and J. R. Wolpaw. Brain–computer interface technology: A review of the second international meeting. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):94–109, 2003.

    Google Scholar 

  54. Wessberg, J., C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin, J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. Nicolelis. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408(6810):361–365, 2000.

    Google Scholar 

  55. Whitley, B. E. Principles of Research in Behavioral Science. New York: McGraw-Hill Humanities, 1996.

  56. Wolpaw, J. R., N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan. Brain–computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2):164–173, 2000.

    Google Scholar 

  57. Wolpaw, J. R., N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6):767–791, 2002.

    Article  Google Scholar 

  58. Wolpaw, J. R., D. McFarland, and G. Pfurtscheller. EEG-based communication: Improved accuracy by reponse verification. IEEE Trans. Rehabil. Eng. 6(3):326–333, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Mason PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, S.G., Jackson, M.M.M. & Birch, G.E. A General Framework for Characterizing Studies of Brain Interface Technology. Ann Biomed Eng 33, 1653–1670 (2005). https://doi.org/10.1007/s10439-005-7706-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-7706-3

Key Words

Navigation