Skip to main content
Log in

Human Saphenous Vein Coronary Artery Bypass Graft Morphology, Geometry and Hemodynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Coronary artery bypass graft (CABG) failure has been linked to graft hemodynamics, in particular wall shear stress. This study characterizes the morphology, geometry and wall shear stress patterns in human CABGs. The intimal thickness (IT) in 49 human saphenous vein CABGs was measured by digital light microscopy. The geometry of six saphenous vein CABGs was replicated by post-mortem infusion of Batson’s #17 anatomical corrosion casting compound. Graft hemodynamics were evaluated in two flow models, fabricated from the casts, under steady (Re = 110) and pulsatile flow (Re = 110, α = 2) conditions. Saphenous vein CABGs in situ for more than 2 months had, on average, the greatest IT on the hood and suture sites of the distal anastomosis. Floor thickening was highly variable and significantly less than IT at the hood, suture site and graft body. All casts showed an indentation along the floor and 5/6 casts displayed a sharp local curvature on the hood. In both flow models, a large increase in wall shear rate occurred on the hood, just proximal to the toe. The local geometry of the hood created this large spatial gradient in wall shear stress which is a likely factor in hood intimal hyperplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abizaid, A., M. A. Costa, M. Centemero, A. S. Abizaid, V. M. Legrand, R. V. Limet, G. Schuler, F. W. Mohr, W. Lindeboom, A. G. Sousa, J. E. Sousa, B. van Hout, P. G. Hugenholtz, F. Unger, and P. W. Serruys. Clinical and economic impact of diabetes mellitus on percutaneous and surgical treatment of multivessel coronary disease patients: Insights from the arterial revascularization therapy study (ARTS) trial. Circulation 104:533–538, 2001.

    Google Scholar 

  2. American Heart Association. Heart disease and stroke statistics-2003 update. 2002. Dallas Texas, American Heart Association.

    Google Scholar 

  3. Ballyk, P. D., C. Walsh, J. Butany, and M. Ojha. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech. 31:229–237, 1998.

    Google Scholar 

  4. Bassiouny, H. S., S. White, S. Glagov, E. Choi, D. P. Giddens, and C. K. Zarins. Anastomotic intimal hyperplasia: Mechanical injury or flow induced. J. Vasc. Surg. 15:708–716, 1992.

    Google Scholar 

  5. Berguer, R., R. F. Higgens, and D. J. Reddy: Intimal Hyperplasia; An experimental study. Arch Surg 115:332–335, 1980.

    Google Scholar 

  6. Bush, H. L. J., J. A. Jakubowski, G. R. Curl, D. Deykin, and D. C. Nabseth. The natural history of endothelial structure and function in arterialized vein grafts. J. Vasc. Surg. 3:204–215, 1986.

    Google Scholar 

  7. Butany, J. W., T. E. David, and M. Ojha. Histological and morphometric analyses of early and late aortocoronary vein grafts and distal anastomoses. Can. J. Cardiol. 14:671–677, 1998.

    Google Scholar 

  8. Couch, G. G., K. W. Johnston, and M. Ojha. Full-field flow visualization and velocity measurement with a photochromic grid method. Meas. Sci. Technol. 7:1238–1246, 1996.

    Google Scholar 

  9. de Feyter, P. J., P. W. Serruys, F. Unger, R. Beyar, de V. V. S. Milo, R. Simon, D. Regensburger, P. A. Crean, E. McGovern, van den HP, C. van Cauwelaert, I. Penn, G. F. Tyers, and W. Lindeboom. Bypass surgery versus stenting for the treatment of multivessel disease in patients with unstable angina compared with stable angina. Circ. 105:2367–2372, 2002.

    Google Scholar 

  10. DePaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.

    Google Scholar 

  11. Dobrin, P. B., R. Mirande, S. Kang, Q. S. Dong, and R. Mrkvicka. Mechanics of end-to-end artery-to-PTFE graft anastomoses. Ann. Vasc. Surg. 12:317–323, 1998.

    Google Scholar 

  12. Ethier, C. R., S. Prakash, D. A. Steinman, R. L. Leask, G. G. Couch, and M. Ojha. Steady flow separation patterns in a 45 degree junction. J. Fluid Mech. 411:1–38, 2000.

    MATH  Google Scholar 

  13. Ethier, C. R., D. A. Steinman, X. Zhang, S. R. Karpik, and M. Ojha. Flow waveform effects on end-to-side anastomotic flow patterns. J. Biomech. 31:609–617, 1998.

    Google Scholar 

  14. Fitzgibbon, G. M., J. R. Burton, and A. J. Leach. Coronary bypass graft fate; Angiographic grading of 1400 consecutive grafts early after operatin and of 1132 after one year. Circulation 57:1070–1074, 1978.

    Google Scholar 

  15. Fitzgibbon, G. M., H. P. Kafka, A. J. Leach, W. J. Keon, G. D. Hooper, and J. R. Burton. Coronary bypass graft fate and patient outcome; Angiographic follow up of 5,065 grafts related to survival and reoperation in 1388 patients during 25 years. J Am Coll Cardiol 28:616–626, 1996.

    Article  CAS  PubMed  Google Scholar 

  16. Fitzgibbon, G. M., A. J. Leach, W. J. Keon, J. R. Burton, and H. P. Kafka. Coronary bypass graft fate: Angiographic study of 1179 vein grafts early, one year, and five years after operation. J. Thorac. Cardiovasc. Surg. 91:773–778, 1986.

    Google Scholar 

  17. Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res. 22:165–197, 1968.

    Google Scholar 

  18. Galjee, M. A., A. C. van Rossum, T. Doesburg, M. Hofman, T. Falke, and C. Visser. Quantification of coronary artery bypass graft flow by magnetic resonance phase velocity mapping. Magn. Reson. Imag. 14:485–493, 1996.

    Google Scholar 

  19. Garvey, W. Modified elastic tissue-Masson trichrome stain. Stain Technol. 59:213–216, 1984.

    Google Scholar 

  20. Garvey, W., A. Fathi, F. Bigelow, B. Carpenter, and C. Jimenez. A combined elastic, fibrin and collagen stain. Stain Technol. 62:365–368, 1987.

    Google Scholar 

  21. Ghali, W. A., H. Quan, and R. Brant. Coronary artery bypass grafting in Canada: National and provincial mortality trends, 1992–1995. CMAJ 159:25–31, 1998.

    Google Scholar 

  22. Giddens, D. P., C. K. Zarins, and S. Glagov. The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng. 115:588–594, 1993.

    Google Scholar 

  23. Gimbrone, M. A., J. N. Topper, T. Nagel, K. R. Anderson, and G. Garcia-Cardena. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. N Y Acad. Sci. 902:230–239, 2000.

    Article  Google Scholar 

  24. Graham, M. M., W. A. Ghali, P. D. Faris, P. D. Galbraith, C. M. Norris, and M. L. Knudtson. Survival after coronary revascularization in the elderly. Circ. 105:2378–2384, 2002.

    Google Scholar 

  25. Hasson, J. E., J. Megerman, and W. M. Abbott. Increased compliance near vascular anastomoses. J. Vasc. Surg. 2:419–423, 1985.

    Google Scholar 

  26. Inzoli, F., F. Migliavacca, and G. Pennati. Numerical analysis of steady flow in aorto-coronary bypass 3-D model. J. Biomech. Eng. 118:172–179, 1996.

    Google Scholar 

  27. Jackson, Z. S., H. Ishibashi, A. I. Gotlieb, and B. L. Langille. Effects of anastomotic angle on vascular tissue response at end-toside arterial grafts. J. Vasc. Surg. 34:300–307, 2001.

    Google Scholar 

  28. Jones, S. A., D. P. Giddens, F. Loth, C. K. Zarins, F. Kajiya, I. Morita, O. Hiramatsu, Y. Ogasawara, and K. Tsujioka. In-Vivo measurements of blood flow velocity profiles in canine ilio-femoral anastomotic bypass grafts. J. Biomech. Eng. 119:30–38, 1997.

    Google Scholar 

  29. Keynton, R. S., M. M. Evancho, R. L. Sims, and S. E. Rittgers. The effect of graft caliber upon wall shear within in vivo distal vascular anastomoses. J. Biomech. Eng. 121:79–88, 1999.

    Google Scholar 

  30. Keynton, R. S., M. M. Evancho, R. L. Sims, N. V. Rodway, A. Gobin, and S. E. Rittgers. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: An in vivo model study. J. Biomech. Eng. 123:464–473, 2001.

    Google Scholar 

  31. Lametschwandtner, A., U. Lametschwandtner, and T. Weiger. Scanning electron microscopy of vascular corronsion casts-technique and applications: Udated review. Scan. Microsc. 4:889–941, 1990.

    Google Scholar 

  32. Loth, F., S. A. Jones, D. P. Giddens, H. S. Bassiouny, S. Glagov, and C. K. Zarins. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions. J. Biomech. Eng. 119:187–194, 1997.

    Google Scholar 

  33. Moore, J. A., D. A. Steinman, S. Prakash, K. W. Johnston, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J. Biomech. Eng. 121:265–272, 1999.

    Google Scholar 

  34. Nagel, T., N. Resnick, C. F. Dewey, and M. A. J. Gimbrone. Vascular Endothelial cell respond to spatial gradient in gluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19:1825–1834, 1999.

    Google Scholar 

  35. Nerem, R. M., R. W. Alexander, D. C. Chappell, R. M. Medford, S. E. Varner, and W. R. Taylor. The study of the influence of flow on vascular endothelial biology. Am. J. Med. Sci. 316:169–175, 1998.

    Google Scholar 

  36. Office for official publications of the european communities: Health statistics Atlas on mortality in the European Union: Chapter 8 Cardiovascular diseases. Offic. Publ. Eur. Commun. 1–9, 2003.

  37. Ojha, M. Wall shear stress temporal gradient and anastomotic intimal hyperplasia. Circ. Res. 74:1227–1231, 1994.

    Google Scholar 

  38. Ojha, M., R. S. Cobbold, and K. W. Johnston. Hemodynamics of a side-to-end proximal arterial anastomosis model. J. Vasc. Surg. 17:646–655, 1993.

    Google Scholar 

  39. Ojha, M., R. S. Cobbold, and K. W. Johnston. Influence of angle on wall shear stress distribution for an end-to-side anastomosis. J. Vasc. Surg. 19:1067–1073, 1994.

    Google Scholar 

  40. Ojha, M., R. L. Hummel, R. S. Cobbold, and K. W. Johnston: Development and evaluation of a high resolution photochromic dye method for pulsatile flow studies. J. Phys. E: Sci. Instrum. 21:998–1004, 1988.

    Google Scholar 

  41. Ojha, M., R. L. Leask, K. W. Johnston, T. E. David, and J. Butany. Histology and morphology of 59 internal thoracic artery grafts and their distal anastomoses. Ann. Thorac. Cardiovasc. Surg. 70:1338–1344, 2000.

    Google Scholar 

  42. Park, H., J. A. Moore, O. Trass, and M. Ojha. Laser photochromic velocimetry estimation of the vorticity and pressure field-two dimenstional flow in a curved vessel. Exp. Fluids 26:55–62, 1999.

    Google Scholar 

  43. Popovich, A. T., and R. L. Hummel. A new method for non-disturbing turbulent flow measurements very close to a wall. Chem. Eng. Sci. 22:21–25, 1967.

    Google Scholar 

  44. Rittgers, S. E, P. E. Karayannacos, J. F. Guy, R. M. Nerem, G. M. Shaw, J. R. Hostetler, and J. S. Vasko: Velocity distribution and intimal proliferation in autologous vein grafts in dogs. Circ. Res. 42:792–801, 1978.

    CAS  PubMed  Google Scholar 

  45. Smith, S. H., and J. C. Geer. Morphology of saphenous vein-coronary artery bypass grafts. Arch. Pathol. Lab. Med. 107:13–18, 1983.

    Google Scholar 

  46. Sottiurai, V. S., J. S. Yao, W. R. Flinn, and R. C. Batson. Intimal hyperplasia and neointima: An ultrastructural analysis of thrombosed grafts in humans. Surgery 93:809–817, 1983.

    Google Scholar 

  47. Steinman, D. A., and C. R. Ethier: The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. J. Biomech. Eng. 116:294–301, 1994.

    Google Scholar 

  48. Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, and C. F. Dewey. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-midgration loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102–3106, 2001.

    Google Scholar 

  49. Tiwari, A., K. S. Cheng, H. Salacinski, G. Hamilton, and A. M. Seifalian: Improving the patency of vascular bypass grafts: The role of suture materials and surgical techniques on reducing anastomotic compliance mismatch. Eur. J. Vasc. Endovasc. Surg. 25:287–295, 2003.

    Google Scholar 

  50. White, S., C. K. Zarins, D. P. Giddens, H. S. Bassiouny, S. A. Jones, and S. Glagov. Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: Effects of pulsatility, flow division, reynolds number, and hood length. J. Biomech. Eng. 115:104–111, 1993.

    Google Scholar 

  51. Zeng, D., Z. Ding, M. H. Friedman, and C. R. Ethier. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31:420–429, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Leask.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leask, R.L., Butany, J., Johnston, K.W. et al. Human Saphenous Vein Coronary Artery Bypass Graft Morphology, Geometry and Hemodynamics. Ann Biomed Eng 33, 301–309 (2005). https://doi.org/10.1007/s10439-005-1732-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-1732-z

Keyword

Navigation