Skip to main content
Log in

Nonhomogeneous Deformation in the Anterior Leaflet of the Mitral Valve

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In the mitral valve, regional variations in structure and material properties combine to affect the biomechanics of the entire valve. Previous biaxial testing has shown that mitral valve leaflet tissue is highly extensible, and exhibits nonlinear, anisotropic material properties. In this study, experimental measurements of mitral valve leaflet deformation under quasi-static pressure loading were performed on isolated porcine hearts. Biplane video images of markers placed on the anterior leaflet surface were used to reconstruct the 3D position of the markers at several pressure levels over the physiological range. A least-squares finite-element method was used to fit parametric models to the markers and to calculate the deformation over the surface. The results showed that the leaflet deformations were anisotropic, exhibiting a large nonhomogeneous radial stretch and a small circumferential stretch. This information can be used to better understand how the valve deforms under physiological loading, and to help design treatments for valve problems, such as mitral regurgitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaradehyde-treated aortic valve cusp: Part II–a structural constitutive model. J. Biomech. Eng. 122:327–335, 2000.

    Google Scholar 

  2. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp–part I: Experimental results. J. Biomech. Eng. 122:23–30, 2000.

    Google Scholar 

  3. Chen, L., A. D. McCulloch, and K. May-Newman. Nonhomogeneous Surface Strain on the Mitral Valve. Charlotte, NC: Twenty Second Southern Biomedical Engineering Conference, 2003.

    Google Scholar 

  4. Chen, L., F. C. P. Yin, and K. May-Newman. The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone. J. Biomech. Eng. 126:244–251, 2004.

    Google Scholar 

  5. Ghista, D. N., and A. P. Rao. Mitral-valve mechanics–stress–strain characteristics of excised leaflets, analysis of its functional mechanics and its medical application. Med. Biol. Eng. 11(6):691–702, 1973.

    Google Scholar 

  6. Hunter, P. J., and B. H. Smaill. The analysis of cardiac function: A continuum approach. Prog. Biophys. Mol. Biol. 52:101–164, 1989.

    Google Scholar 

  7. Ivan, E. Sutherland. Three-dimensional data input by tablet. Proceedings of the IEEE, 62(4):453–461, 1974.

    Article  Google Scholar 

  8. Jean, F. Obadia., Cendrine Casali, Jean F. Chassignolle., and Marc Janier. Mitral subvalvular apparatus: Different functions of primary and second chordae. Circulation 96(9):3124–3128, 1997.

    Google Scholar 

  9. Komoda, T., R. Hetzer., and C. Uyama. Mitral annular function assessed by 3D imaging of mitral valve surgery. J. Heart Valve Dis. 3:483–490, 1994.

    Google Scholar 

  10. Kunzelman, K. S., and R. P. Cochran. Stress/strain characteristics of porcine mitral valve tissue: Parallel versus perpendicular collagen orientation. J. Card. Surg. 7:71–78, 1992.

    Google Scholar 

  11. Kunzelman, K. S., R. P. Cochran, C. J. Chuong, and R. C. Eberhart. Engineering analysis of mitral valve repair. Dallas, TX: Sixth Southern Biomedical Engineering Conference, 1987.

    Google Scholar 

  12. Kunzelman, K. S., M. S. Sacks, R. P. Cochran, and A. C. Eberhardt. Mitral valve leaflet collagen distribution by laser analysis. Seventh South. Biomed. Eng. Conf. 82–85, 1988.

  13. Kyriacou, S. K., C. Schwab., and J. D. Humphrey. Finite element analysis of nonlinear orthotropic hyperelastic membranes. Comput. Mechanics 18:269–278, 1996.

    MATH  Google Scholar 

  14. Lam, J. H., N. Ranganathan., E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. I. Chordae tendineae: A new classification. Circulation 41(3):449–458, 1970.

    Google Scholar 

  15. Lis, Y., M. C. Burleigh, D. J. Parker, A. H. Child, J. Hogg., and M. J. Davies. Biochemical characterization of individual normal, floppy and rheumatic human mitral valves. Biochem. J. 244(3):597–603, 1987.

    Google Scholar 

  16. May-Newman, K. Effect of left ventricular pressure on deformation in the mitral valve (Abstract). Proceedings of the First Joint BMES/EMBS Conference, Atlanta, GA, 1999.

  17. May-Newman, K., and F. C. Yin. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. 269(4 Pt 2):H1319–H1327, 1995.

    Google Scholar 

  18. May-Newman, K., and F. C. A. Yin. Constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1):38–47, 1998.

    Google Scholar 

  19. Mazhari, R., J. H. Omens, L. K. Waldman, and A. D. McCulloch. Regional myocardial perfusion and mechanics: A model-based method of analysis. Ann. Biomed. Eng. 26(5):743–755, 1998.

    Google Scholar 

  20. McCulloch, A. D., B. H. Smaill, and P. J. Hunter. Left ventricular epicardial deformation in isolated arrested dog heart. Am. J. Physiol. 252(1 Pt 2):H233–H241, 1987.

    Google Scholar 

  21. Meier, G. D., M. C. Ziskin, W. P. Santamore, and A. A. Bove. Kinematics of the beating heart. IEEE Trans. Biomed. Eng. BME-27(6):319–329, 1980.

    Google Scholar 

  22. Miller, G. E., J. F. Hunter, and W. M. Lively. A note on mitral valve mechanics: A pre-stressed leaflet concept. J. Biomech. 14(5):373–375, 1981.

    Google Scholar 

  23. Chevaugeon, N., E. Verron., and B. Peseux. Finite element analysis of nonlinear transversely isotropic hyperelastic membranes for thermoforming applications. Eur. Congr. Comput. Methods Appl. Sci. Eng. 1–17, 2000.

  24. Nielsen, P. M. F., P. J. Hunter, and B. H. Smaill. Biaxial testing of membrane biomaterials: Testing equipment and procedures. J. Biomech. Eng. 113:295–300, 1991.

    Google Scholar 

  25. Nielsen, S. L., H. Nygaard., A. A. Fontaine, J. M. Hasenkam, S. He., N. T. Andersen, and A. P. Yoganathan. Chordal force distribution determines systolic mitral leaflet configuration and severity of functional mitral regurgitation. J. Am. Coll. Cardiol. 33(3):843–853, 1999.

    Google Scholar 

  26. Ormiston, J., P. Shah., C. Tei., and M. Wong. Size and motion of the mitral valve annulus in man. Circulation 64:113–120, 1981.

    Google Scholar 

  27. Ranganathan, N., J. H. Lam, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. II. The value leaflets. Circulation 41(3):459–467, 1970.

    Google Scholar 

  28. Sacks, M. S., Z. He., L. Baijens., S. Wanant., P. Shan., H. Sugimoto., and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 1281–1290, 2002.

  29. Salisbury, P. F., C. E. Cross, and P. A. Rieben. Chorda tendinea tension. Am. J. Physiol. (Heart) 205:385–392, 1963.

    Google Scholar 

  30. Silverman, M. E., and J. W. Hurst. The mitral complex: Interaction of the anatomy, physiology and pathology of the mitral annulus, mitral valve leaflets, chordae tendineae and papillary muscles. Am. Heart J. 76(3):399–418, 1968.

    Google Scholar 

  31. Treloar, L. R. G. Strains in an inflated rubber sheet, and the mechanism of bursting. Trans. Inst. Rub. Ind. 19:201–212, 1944.

    Google Scholar 

  32. Tsakiris, A. G., G. von Bernuth, G. C. Rastelli, M. J. Bourgeois, J. L. Titus, and E. H. Wood. Size and motion of the mitral valve annulus in anesthetized intact dogs. J. Appl. Physiol. 30(5):611–618, 1971.

    Google Scholar 

  33. Vesely, I., D. R. Boughner, and J. Leeson-Dietrich. Bioprosthetic valve tissue viscoelasticity: Implications on accelerated pulse duplicator testing. Ann. Thorac. Surg. 60:S379–S383, 1995.

    Google Scholar 

  34. Yin, F. C. P. Applications of the finite-element method to ventricular mechanics. CRC Crit. Rev. Biomed. Eng. 12:311–342, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen May-Newman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., McCulloch, A.D. & May-Newman, K. Nonhomogeneous Deformation in the Anterior Leaflet of the Mitral Valve. Ann Biomed Eng 32, 1599–1606 (2004). https://doi.org/10.1007/s10439-004-7813-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-004-7813-6

Navigation