Skip to main content
Log in

Relative performance concerns among investment managers

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

This paper examines the strategic interaction of n portfolio managers with relative performance concerns. We characterize the unique constant Nash equilibrium and derive some compelling results. Surprisingly, in equilibrium, more risk tolerant players do not generally take riskier positions than less risk tolerant players. We derive sufficient conditions under which this relation does hold. We also examine the effects of adding new players to the game on the equilibrium, and look at the equilibrium in the limiting case as the number of players goes to infinity. We show that for a symmetric population, the equilibrium strategy of the players converges pointwise to some limiting equilibrium policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Indeed there is a (slightly irreverent) quote by the topologist R. H. Bing which conveys something similar to what we are saying here: “Dimension 4 is the most difficult dimension. It is too old to spank, the way we might deal with the little dimensions 1, 2, and 3; but it is also too young to reason with, the way we deal with the grown-up dimensions 5 and higher.” Cannon (2011)

  2. Recall that the natural filtration generated by a Brownian motion is \(F^{W}(t)= \sigma \left( \left\{ W_{s} | 0 \le s \le t \right\} \right) \), \(\forall t\in [0,T]\).

  3. Henceforth, we omit the word constant and just write Nash equilibrium.

  4. A portfolio strategy is admissible if it belongs to the set \({\mathcal {P}}\), where \({\mathcal {P}}\) consists of self-financing \({\mathcal {F}}\)-progressively measurable real-valued processes \((\pi _{t})_{t \in [0,T]}\) which satisfy \({\mathbb {E}}\int _{0}^{T}|\pi _{t}|^{2}dt < \infty \).

  5. Detailed in “Appendix A.2”.

  6. In this case, this assumption is without loss of generality.

  7. Including Friend and Blume (1975) and Donkers and van Soest (1999).

References

  • Agarwal, V., Daniel, N.D., Naik, N.Y.: Flows, performance, and managerial incentives in hedge funds. In: EFA 2003 Annual Conference Paper No. 501 (2004)

  • Agarwal, V., Daniel, N.D., Naik, N.Y.: Role of managerial incentives and discretion in hedge fund performance. J Finance 64(5), 2221–2256 (2009)

    Article  Google Scholar 

  • Barsky, R.B., Juster, F.T., Kimball, M.S., Shapiro, M.S.: Preference parameters and behavioral heterogeneity: an experimental approach in the health and retirement study. Q J Econ 112(2), 537–579 (1997)

    Article  Google Scholar 

  • Basak, S., Makarov, D.: Competition among portfolio managers and asset specialization. In: Paris December 2014 Finance Meeting EUROFIDAI-AFFI Paper (2015)

  • Basak, S.S., Makarov, D.: Strategic asset allocation in money management. J Finance 69(1), 179217 (2014)

    Article  Google Scholar 

  • Brown, S.J., Goetzmann, W.N., Park, J.: Careers and survival: competition and risk in the hedge fund and CTA industry. J Finance 56(5), 1869–1886 (2001)

    Article  Google Scholar 

  • Browne, S.: Stochastic differential portfolio games. J Appl Probab 37, 126147 (2000)

    Article  Google Scholar 

  • Cannon, J.W.: ‘Embeddings in manifolds’, by Robert J. Daverman and Gerard A. Venema. Bull Am Math Soc 48(3), 485–490 (2011)

    Article  Google Scholar 

  • Cashman, G.D., Deli, D.N., Nardari, F., Villupuram, S.: Investors do respond to poor mutual fund performance: evidence from inflows and outflows. Financ Rev 47(4), 719–739 (2012)

    Article  Google Scholar 

  • Coval, J.D.: International capital flows when investors have local information. Harvard Business School Working Paper No. 04-026 (2003)

  • Coval, J.D., Moskowitz, T.J.: Home bias at home: local equity preference in domestic portfolios. J Finance 54(6), 20452073 (1999)

    Article  Google Scholar 

  • Coval, J.D., Moskowitz, T.J.: The geography of investment: informed trading and asset prices. J Polit Econ 4, 811–841 (2001)

    Article  Google Scholar 

  • Donkers, B., van Soest, A.: Subjective measures of household preferences and financial decisions. J Econ Psychol 20(6), 613–642 (1999)

    Article  Google Scholar 

  • Espinosa, G., Touzi, N.: Optimal investment under relative performance concerns. Math Finance 25(2), 221–257 (2015)

    Article  Google Scholar 

  • Fang, D., Noe, T.H.: Skewing the odds: taking risks for rank-based rewards. Mimeo, New York (2016)

    Google Scholar 

  • Friend, I., Blume, M.E.: The demand for risky assets. Am Econ Rev 65(5), 900–922 (1975)

    Google Scholar 

  • Goetzmann, W.N., Kumar, A.: Equity Portfolio Diversification. Mimeo, New York (2008)

    Google Scholar 

  • Halek, M., Eisenhauer, J.G.: Demography of risk aversion. J Risk Insur 68(1), 1–24 (2001)

    Article  Google Scholar 

  • Heath, C., Tversky, A.: Preferences and beliefs: ambiguity and competence in choice under certainty. J Risk Uncertain 4, 5–28 (1991)

    Article  Google Scholar 

  • Huang, L., Hong, L.: Rational inattention and portfolio selection. J Finance 62(4), 19992040 (2007)

    Article  Google Scholar 

  • Huberman, G.: Familiarity breeds investment. Rev Financ Stud 14(3), 65980 (2001)

    Article  Google Scholar 

  • Ippolito, R.A.: Consumer reaction to measures of poor quality: evidence from the mutual fund industry. J Law Econ 35(1), 45–70 (1992)

    Article  Google Scholar 

  • Lacker, D., Zariphopoulou, T.: Mean field and n-agent games for optimal investment under relative performance criteria. ArXiv e-prints arXiv:1703.07685 (2017)

  • Luo, Y.: Rational inattention, long-run consumption risk, and portfolio choice. Rev Econ Dyn 13, 843860 (2010)

    Article  Google Scholar 

  • Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J Econ Theory 3(4), 373413 (1971)

    Article  Google Scholar 

  • Sawicki, J.: Investors’ differential response to managed fund performance. J Financ Res 24(3), 367–3874 (2001)

    Article  Google Scholar 

  • Sharpe, W.F.: Mutual fund performance. J Bus 39, 119–138 (1966)

    Article  Google Scholar 

  • Sirri, E.R., Tufano, P.: Costly search and mutual fund flows. J Finance 53(5), 1589–1622 (1998)

    Article  Google Scholar 

  • Strack, P.: Risk-Taking in Contests: The Impact of Fund-Manager Compensation on Investor Welfare. Mimeo, New York (2016)

    Google Scholar 

  • van Binsbergen, J., Brandt, M., Koijen, R.: Optimal decentralized investment management. J Finance 63, 18491895 (2008)

    Google Scholar 

  • van Nieuwerburgh, S., Veldkamp, L.: Information immobility and the home bias puzzle. J Finance 64(3), 1187–1215 (2009)

    Article  Google Scholar 

  • van Nieuwerburgh, S., Veldkamp, L.: Information acquisition and underdiversification. Rev Econ Stud 77(2), 779–805 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Whitmeyer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper has benefited greatly from helpful comments and suggestions by an anonymous referee, Hassan Afrouzi, Svetlana Boyarchenko, Gleb Domnenko, Rosemary Hopcroft, Cooper Howes, Joseph Whitmeyer, Thomas Wiseman, Thaleia Zariphopoulou, and seminar audiences at the University of Texas at Austin, the 2017 Texas Economic Theory Camp, and the 2017 Stony Brook Game Theory Conference. All remaining errors are, regrettably, my own.

Appendix A

Appendix A

1.1 A.1 Theorem 1 proof

We proceed by considering WLOG player 1’s problem. First, apply the Dynamic Programming Principle:

$$\begin{aligned} V(X_{1},\ldots ,X_{n},t; \pi _{2},\ldots ,\pi _{n}) = \max _{\pi }{\mathbb {E}}[u(X_{1T}^{\pi _{1}})|X_{1t} = x_{1},\ldots ,X_{nt} = x_{n}] \end{aligned}$$

where for convenience we write only the first argument of player 1’s utility function instead of \(u_{iT}(X_{iT}, \times _{j \ne i} R_{ijT})\).

In infinitesimal form, \(\max _{\pi }{\mathbb {E}}(dV) = 0\). By the Principle of Optimality, V has zero drift at \(\pi ^{*}\). Now, we use It\({\hat{o}}\)’s Lemma:

$$\begin{aligned} dV(X_{1t},\ldots ,X_{n},t; \pi _{2},\ldots ,\pi _{n}) = V_{t}dt + \sum _{i=1}^{n}V_{X_{i}}dX_{i} + \frac{1}{2}\sum _{i,j =1}^{n}V_{X_{i}X_{j}}dX_{i}dX_{j}\nonumber \\ \end{aligned}$$
(A1)

We use (1) and (2) to obtain:

$$\begin{aligned} \begin{aligned} (dX_{it})^{2}&= \sigma ^{2}_{X_{i}}\pi _{it}^{2}X_{it}^{2}dt dX_{it}dX_{jt} = \rho _{ij}\sigma _{i}\sigma _{j}X_{it}X_{jt}\pi _{it}\pi _{jt}dt \end{aligned} \end{aligned}$$

and substitute into (A1) to obtain

$$\begin{aligned} \begin{aligned} dV&= \bigg [V_{t} + \sum _{i=1}^{n}V_{X_{i}}X_{i}[r+\pi _{i}\mu _{i}] + \frac{1}{2}\sum _{i=1}^{n}V_{X_{i}X_{i}}X_{i}^{2}\pi _{i}^{2}\sigma _{i}^{2} \\&\quad +\sum _{i=1}^{n}\sum _{j=i+1}^{n}\rho _{ij}V_{X_{i}X_{j}}X_{i}X_{j}\pi _{i}\pi _{j}\sigma _{i}\sigma _{j} \bigg ]dt\\&\quad + \sum _{i=1}^{n}\bigg [ \cdots dW_{it} \bigg ] \end{aligned} \end{aligned}$$

At the optimum, the drift is equal to 0 and so we have:

$$\begin{aligned} \max _{\pi _{1}}\left\{ V_{t} + \sum _{i=1}^{n}V_{X_{i}}X_{i}[r+\pi _{i}\mu _{i}] + \frac{1}{2}\sum _{i=1}^{n}V_{X_{i}X_{i}}X_{i}^{2}\pi _{i}^{2}\sigma _{i}^{2} + \sum _{i=1}^{n}\sum _{j=i+1}^{n}\rho _{ij}V_{X_{i}X_{j}}X_{i}X_{j}\pi _{i}\pi _{j}\sigma _{i}\sigma _{j} \right\} \end{aligned}$$

The HJB Equation (A2) is:

$$\begin{aligned} dV= & {} V_{t}dt + V_{X_{1}}X_{1}r + \sum _{i=2}^{n}V_{X_{i}}X_{i}[r+\pi _{i}\mu _{i}] + \frac{1}{2}\sum _{i=2}^{n}V_{X_{i}X_{i}}X_{i}^{2}\pi _{i}^{2}\sigma _{i}^{2}\nonumber \\&+\, \sum _{i=2}^{n}\sum _{j=i+1}^{n}\rho _{ij}V_{X_{i}X_{j}}X_{i}X_{j}\pi _{i}\pi _{j}\sigma _{i}\sigma _{j}\nonumber \\&+ \max _{\pi _{1}}\left\{ V_{X_{1}}X_{1}\pi _{1}\mu _{1} + \frac{1}{2}V_{X_{1}X_{1}}X_{1}^{2}\pi _{1}^{2}\sigma _{1}^{2} + \sum _{j \ne 1}\rho _{1j}V_{X_{1}X_{j}}X_{1}X_{j}\pi _{1}\pi _{j}\sigma _{1}\sigma _{j} \right\} \nonumber \\ \end{aligned}$$
(A2)

We take the First Order Condition of the HJB Equation (A2):

$$\begin{aligned} V_{X_{1}}X_{1}\mu _{1} + V_{X_{1}X_{1}}X_{1}^{2}\pi _{1}\sigma _{1}^{2} + \sum _{j \ne 1}\rho _{1j}V_{X_{1}X_{j}}X_{1}X_{j}\pi _{j}\sigma _{1}\sigma _{j} = 0 \end{aligned}$$

Rearranging, obtain:

$$\begin{aligned} \pi _{1}^{*} = -\left( \frac{V_{X_{1}}X_{1}\mu _{1} + \sum _{j \ne 1}\rho _{1j}V_{X_{1}X_{j}}X_{1}X_{j}\pi _{j}\sigma _{1}\sigma _{j}}{ V_{X_{1}X_{1}}X_{1}^{2}\sigma _{1}^{2}}\right) \end{aligned}$$
(A3)

Now suppose

$$\begin{aligned} V(X_{1},\ldots ,T) = U(X_{1}) = \frac{f(t)}{1-\gamma _{i}}\left( X_{it}^{{\hat{\theta }}_{i}}\prod _{j \ne i}R_{ijt}^{\theta _{ij}}\right) ^{(1-\gamma _{i})} \end{aligned}$$
(A4)

For computational convenience, set

$$\begin{aligned} {\mathcal {A}} :=\left( X_{it}^{{\hat{\theta }}_{i}}\prod _{j \ne i}R_{ijt}^{\theta _{ij}}\right) ^{(1-\gamma _{i})} \end{aligned}$$

Thus, (A4) can be written as:

$$\begin{aligned} \frac{f(t)}{1-\gamma _{i}}{\mathcal {A}} \end{aligned}$$
(A5)

From (A5), we obtain:

$$\begin{aligned} \begin{aligned} V_{t}&= \frac{f_{t}}{1-\gamma _{1}}{\mathcal {A}} \quad \quad V_{X_{1}} = f(t){\mathcal {A}}X_{1}^{-1}\\ V_{X_{1}X_{1}}&= -\gamma _{1} f(t){\mathcal {A}}X_{1}^{-2} \quad \quad \quad V_{X_{j}} = -\theta _{1j} f(t){\mathcal {A}}X_{j}^{-1} \qquad \text {for }j \ne 1\\ V_{X_{j}X_{j}}&= (\theta _{1j}^{2}(1-\gamma _{1}) + \theta _{1j}) f(t){\mathcal {A}}X_{j}^{-2} \quad \qquad \qquad \qquad \qquad \text {for }j \ne 1\\ V_{X_{1}X_{j}}&= -\theta _{1j}(1-\gamma _{1}) f(t){\mathcal {A}}X_{1}^{-1}X_{j}^{-1} \quad \qquad \qquad \qquad \qquad \quad \text {for }j \ne 1\\ V_{X_{j}X_{k}}&= \theta _{1j}\theta _{1k}(1-\gamma _{1}) f(t){\mathcal {A}}X_{j}^{-1}X_{k}^{-1}\,\, \quad \qquad \qquad \qquad \qquad \text {for }j,k \ne 1 \end{aligned} \end{aligned}$$
(A6)

Substituting (A6) into (A3) we obtain:

$$\begin{aligned} \pi _{1}^{*} = \left( \frac{\mu _{1} + \sum _{j \ne 1}\rho _{1j}\theta _{1j}(\gamma _{1}-1)\pi _{j}\sigma _{1}\sigma _{j}}{ \gamma _{1}\sigma _{1}^{2}}\right) \end{aligned}$$

It remains to verify that our guess does indeed satisfy the HJB equation. Revisiting the HJB Equation,

$$\begin{aligned} 0 = V_{t} + \sum _{i=1}^{n}V_{X_{i}}X_{i}[r+\pi _{i}\mu _{i}] + \frac{1}{2}\sum _{i=1}^{n}V_{X_{i}X_{i}}X_{i}^{2}\pi _{i}^{2}\sigma _{i}^{2} + \sum _{i=1}^{n}\sum _{j=i+1}^{n}\rho _{ij}V_{X_{i}X_{j}}X_{i}X_{j}\pi _{i}\pi _{j}\sigma _{i}\sigma _{j} \end{aligned}$$

Substitute in (A6)

$$\begin{aligned} \begin{aligned} 0 =&\left( \frac{f_{t}}{1-\gamma _{1}}\right) {\mathcal {A}} + f{\mathcal {A}}\left( r+\pi _{1}\mu _{1}\right) - \sum _{j\ne 1} \theta _{1j} f {\mathcal {A}}\left( r+\pi _{j}\mu _{j}\right) - \frac{1}{2}\gamma _{1}f{\mathcal {A}}\pi _{1}^{2}\sigma _{1}^{2} \\&+ \frac{1}{2}\sum _{j\ne 1} (\theta _{1j}^{2}(1-\gamma _{1}) + \theta _{1j})f{\mathcal {A}} \pi _{j}^{2}\sigma _{j}^{2}- \sum _{j\ne 1}\theta _{1j}(1-\gamma _{1})f{\mathcal {A}}\pi _{1}\pi _{j}\sigma _{1}\sigma _{j}\rho _{1j}\\&+ \sum _{i=2}\sum _{j=i+1}\theta _{1i}\theta _{1j}(1-\gamma _{1})f{\mathcal {A}}\pi _{i}\pi _{j}\sigma _{i}\sigma _{j}\rho _{ij} \end{aligned} \end{aligned}$$

Thus, f satisfies

$$\begin{aligned} \frac{f_{t}}{1-\gamma _{1}} + \xi _{1} f = 0 \end{aligned}$$
(A7)

where

$$\begin{aligned} \begin{aligned} \xi _{1} =&\left( r+\pi _{1}\mu _{1}\right) - \sum _{j\ne 1} \theta _{1j}\left( r+\pi _{j}\mu _{j}\right) - \frac{1}{2}\gamma _{1}\pi _{1}^{2}\sigma _{1}^{2} + \frac{1}{2}\sum _{j\ne 1} (\theta _{1j}^{2}(1-\gamma _{1}) + \theta _{1j})\ \pi _{j}^{2}\sigma _{j}^{2}\\&- \sum _{j\ne 1}\theta _{1j}(1-\gamma _{1})\pi _{1}\pi _{j}\sigma _{1}\sigma _{j}\rho _{1j} + \sum _{i=2}\sum _{j=i+1}\theta _{1i}\theta _{1j}(1-\gamma _{1})\pi _{i}\pi _{j}\sigma _{i}\sigma _{j}\rho _{ij} \end{aligned} \end{aligned}$$

Using the boundary condition of \(f(T) = 1\) we solve the differential Eq. (A7), yielding \(f(t) = e^{\xi _{1}(1-\gamma _{1})(T-t)}\). Thus, wealth is given as:

$$\begin{aligned} V(X_{1},\ldots ,t) = \frac{e^{\xi _{1}(1-\gamma _{1})(T-t)}}{1-\gamma _{1}}\left( X_{1t}^{{\hat{\theta }}_{1}}\prod _{j \ne 1}R_{1jt}^{\theta _{1j}}\right) ^{(1-\gamma _{1})} \end{aligned}$$

1.2 A.2 Equation (9) derivation

From Eq. (8) we have

$$\begin{aligned} \begin{aligned} \pi _{i}^{*}&= \frac{\mu + \rho \theta \sigma ^{2}(\gamma _{i} - 1)\xi }{\sigma ^{2}\gamma _{i} + \rho \theta \sigma ^{2}(\gamma _{i} - 1)} = \frac{\mu }{\sigma ^{2}(\gamma _{i}(1+\rho \theta ) - \rho \theta )} + \frac{\rho \theta (\gamma _{i} -1)\xi }{(\gamma _{i}(1+\rho \theta ) - \rho \theta )} \end{aligned} \end{aligned}$$

We sum up these equations over all players i as follows:

$$\begin{aligned} \begin{aligned} \sum _{i} \pi _{i}^{*}&= \sum _{i} \frac{\mu }{\sigma ^{2}(\gamma _{i}(1+\rho \theta ) - \rho \theta )} + \sum _{i} \frac{\rho \theta (\gamma _{i} -1)\xi }{(\gamma _{i}(1+\rho \theta ) - \rho \theta )}\\&= \left( \frac{\mu }{\sigma ^{2}}\right) \sum _{i} \frac{1}{(\gamma _{i}(1+\rho \theta ) - \rho \theta )} + \rho \theta \xi \sum _{i} \frac{(\gamma _{i} -1)}{(\gamma _{i}(1+\rho \theta ) - \rho \theta )} \end{aligned} \end{aligned}$$

Recall that \(\xi = \sum _{i}\pi _{i}^{*}\). This allows us to obtain

$$\begin{aligned} \begin{aligned} \xi \left( 1 - \rho \theta \sum _{i} \frac{\gamma _{i} -1}{\gamma _{i}(1+\rho \theta ) - \rho \theta }\right)&= \left( \frac{\mu }{\sigma ^{2}}\right) \sum _{i} \frac{1}{\gamma _{i}(1+\rho \theta ) - \rho \theta } \end{aligned} \end{aligned}$$

1.3 A.3 Lemma 1 proof

Evidently, it suffices to show that \(\xi \) is strictly locally decreasing in \(\gamma _{i}\) for all i. Recall that \(\xi = A^{-1}B\), where A and B are as defined in Eq. (9). Then, using the chain rule,

$$\begin{aligned} \frac{\partial {\xi }}{\partial {\gamma _{i}}} = -A^{-2}B\frac{\partial {A}}{\partial {\gamma _{i}}} + A^{-1}\frac{\partial {B}}{\partial {\gamma _{i}}} \end{aligned}$$

Define \(x_{i}\) as \(x_{i} :=\gamma _{i}(1 + \rho \theta ) - \rho \theta \) and note that \(\frac{\partial {A}}{\partial {\gamma _{i}}} = -\frac{\rho \theta }{x_{i}^{2}}\). Observe that \(\frac{\partial {\xi }}{\partial {\gamma _{i}}} \le 0\) if and only if

$$\begin{aligned}&A\frac{\partial {B}}{\partial {\gamma _{i}}} - B\frac{\partial {A}}{\partial {\gamma _{i}}} \le 0\nonumber \\&\quad -\left( \frac{\mu }{\sigma ^{2}}\right) \left( \frac{1+\rho \theta }{x_{i}^{2}}\right) \left( 1 - \rho \theta \sum _{j} \frac{\gamma _{j} -1}{x_{j}}\right) + \left( \frac{\mu }{\sigma ^{2}}\right) \sum _{j} \frac{1}{x_{j}} \left( \frac{\rho \theta }{x_{i}^{2}} \right) \le 0\nonumber \\&\rho \theta \sum _{j} \frac{\gamma _{j}}{x_{j}} - \left( \frac{(\rho \theta )^{2}}{1 + \rho \theta }\right) \sum _{j}\frac{1}{x_{j}} - 1\le 0 \end{aligned}$$
(A8)

Define \(\iota (\pmb {\gamma })\) as

$$\begin{aligned} \iota (\pmb {\gamma }) :=\rho \theta \sum _{j} \frac{\gamma _{j}}{x_{j}} - \left( \frac{(\rho \theta )^{2}}{1 + \rho \theta }\right) \sum _{j}\frac{1}{x_{j}} - 1 \end{aligned}$$

Then for arbitrary i,

$$\begin{aligned} \begin{aligned} \frac{\partial {\iota }}{\partial {\gamma _{i}}}&= \rho \theta \left( \frac{1}{x_{i}} - \frac{(1+\rho \theta )\gamma _{i}}{x_{i}^{2}}\right) + \left( \frac{(\rho \theta )^{2}}{1 + \rho \theta }\right) \left( \frac{(1 + \rho \theta )}{x_{i}^{2}}\right) = 0 \end{aligned} \end{aligned}$$

Thus, for all i, \(\iota \) is constant in \(\gamma _{i}\). Accordingly, we may simply substitute in any value of \(\gamma _{i}\). For convenience, substitute in \(\gamma _{i} = 1\) for all i. From (A8),

$$\begin{aligned} \begin{aligned} 0&\ge \rho \theta \sum _{i}1 - \left( \frac{(\rho \theta )^{2}}{1 + \rho \theta }\right) \sum _{i} 1 - 1 \quad \Leftrightarrow \quad \frac{1}{n-1} \ge \rho \theta \end{aligned} \end{aligned}$$

which clearly must hold. \(\square \)

1.4 A.4 Lemma 2 proof

We prove this result by contradiction. Let \(\gamma _{i} > \frac{\rho \theta }{1 + \rho \theta }\) for all i and suppose that \(g(\pmb {\gamma }) \le 0\). That is, \(g(\pmb {\gamma }) \le 0\)

$$\begin{aligned} \begin{aligned}&\Leftrightarrow \quad \qquad \qquad \prod _{i}(\gamma _{i}(1+\rho \theta ) - \rho \theta ) - \rho \theta \sum _{i}(\gamma _{i}-1)\prod _{j \ne i}(\gamma _{j}(1+\rho \theta ) - \rho \theta ) \le 0\\&\Leftrightarrow \quad \qquad \qquad 1 \le \rho \theta \sum _{i}\frac{\gamma _{i} - 1}{(\gamma _{i}(1+\rho \theta ) - \rho \theta )}\\ \end{aligned} \end{aligned}$$

Define \(\psi (\gamma _{i})\) as

$$\begin{aligned} \psi (\gamma _{i}) :=\frac{\gamma _{i} - 1}{(\gamma _{i}(1+\rho \theta ) - \rho \theta )} \end{aligned}$$

Then,

$$\begin{aligned} \begin{aligned} \frac{\partial {\psi }}{\partial {\gamma _{i}}}&= \frac{1}{(\gamma _{i}(1+\rho \theta ) - \rho \theta )} - \frac{(\gamma _{i} - 1)(1 + \rho \theta )}{(\gamma _{i}(1+\rho \theta ) - \rho \theta )^{2}}\\&= \frac{(\gamma _{i}(1+\rho \theta ) - \rho \theta ) - (\gamma _{i} - 1)(1 + \rho \theta )}{(\gamma _{i}(1+\rho \theta ) - \rho \theta )^{2}}\\&= \frac{1}{(\gamma _{i}(1+\rho \theta ) - \rho \theta )^{2}}\\ \end{aligned} \end{aligned}$$

which is continuous and strictly greater than 0 for \(\gamma _{i} \in \left( \frac{\rho \theta }{1 + \rho \theta }, \infty \right) \). Now we examine \(\psi (\gamma _{i})\) in the limit:

$$\begin{aligned} \lim _{\gamma _{i} \rightarrow \infty } \psi (\gamma _{i}) = \frac{1}{(1+\rho \theta )} \end{aligned}$$

Thus,

$$\begin{aligned} \begin{aligned} 1 \le \rho \theta \sum _{i}\frac{\gamma _{i} - 1}{(\gamma _{i}(1+\rho \theta ) - \rho \theta )}&< \frac{n \rho \theta }{(1+\rho \theta )} \end{aligned} \end{aligned}$$

Or, \(1 < \rho \theta (n-1)\), which is clearly false. \(\square \)

1.5 A.5 Proposition 2 proof

If the parameters are completely symmetric across all players, then \(\pi ^{*} = \pi _{i}^{*}\) for all i and

$$\begin{aligned} \pi ^{*} = \left( \frac{\mu }{\sigma ^{2}} \right) \left( \frac{1}{\gamma - \rho \theta (n-1)(\gamma -1)} \right) \end{aligned}$$

First, note that the denominator, \(\gamma - \rho \theta (n-1)(\gamma -1)\) is strictly greater than 0 for permissible values of the parameters. Then, \(\frac{\partial {\pi ^{*}}}{\partial {\gamma }} < 0\) if and only if \(\rho \theta (n-1) -1 < 0\), which clearly must hold. Similarly, \(\frac{\partial {\pi ^{*}}}{\partial {{\mathfrak {s}}}} > 0\) if and only if \(\sigma > 0\). Likewise, \(\frac{\partial {\pi ^{*}}}{\partial {\theta }}>\)\((<)\) 0 if and only if \(\rho (n-1)(\gamma -1)>\)\((<)\) 0 if and only if \((\gamma -1)>\)\((<)\) 0; and \(\frac{\partial {\pi ^{*}}}{\partial {\rho }}>\)\((<)\) 0 if and only if \(\theta (n-1)(\gamma -1)>\)\((<)\) 0 if and only if \((\gamma -1)>\)\((<)\) 0. \(\square \)

1.6 A.6 Lemma 3 proof

Consider the situation with n players, indexed by i. Without loss of generality, suppose \(\gamma _{n} < \gamma _{i}\) for all \(i \ne n\). We prove by contradiction: suppose that in equilibrium there is some j such that \(\pi _{j}^{*} \ge \pi _{n}^{*}\).

Since we are at equilibrium, \(A \varvec{\pi }^{*} = {\mathbf {b}}\). For convenience, we divide both sides by the scalars \(\rho \), \(\theta \) and \(\sigma ^{2}\) and so we may rewrite the relationship as:

$$\begin{aligned} \begin{pmatrix} \frac{\gamma _{1}}{\rho \theta } &{}\quad (1 - \gamma _{1}) &{}\quad \cdots &{}\quad \cdots &{}\quad (1 - \gamma _{1}) \\ (1 - \gamma _{2}) &{}\quad \frac{\gamma _{2}}{\rho \theta } &{}\quad (1 - \gamma _{2}) &{}\quad \ddots &{}\quad (1 - \gamma _{2})\\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad \vdots \\ \vdots &{}\quad \ddots &{}\quad \ddots &{}\quad \ddots &{}\quad \vdots \\ (1 - \gamma _{n}) &{}\quad \cdots &{}\quad \cdots &{}\quad \cdots &{}\quad \frac{\gamma _{n}}{\rho \theta } \end{pmatrix} \begin{pmatrix} \pi _{1}^{*} \\ \pi _{2}^{*} \\ \vdots \\ \vdots \\ \pi ^{*} \end{pmatrix} = \begin{pmatrix} \frac{\mu }{\rho \theta \sigma ^{2}} \\ \frac{\mu }{\rho \theta \sigma ^{2}} \\ \vdots \\ \vdots \\ \frac{\mu }{\rho \theta \sigma ^{2}} \end{pmatrix} \end{aligned}$$

Thus, we have

$$\begin{aligned} \begin{aligned} \frac{1}{\rho \theta }\gamma _{j}\pi _{j}^{*} + (1 - \gamma _{j})\sum _{i \ne j}\pi _{i}^{*}&= \frac{\mu }{\rho \theta \sigma ^{2}}, \quad \frac{1}{\rho \theta }\gamma _{n}\pi _{n}^{*} \\&\quad + (1 - \gamma _{n})\sum _{i \ne n}\pi _{i}^{*} = \frac{\mu }{\rho \theta \sigma ^{2}}\\ \end{aligned} \end{aligned}$$
(A9)

Combining,

$$\begin{aligned} \pi _{j}^{*}\left( \frac{1}{\rho \theta }\gamma _{j} + \gamma _{n} -1\right) = \pi _{n}^{*}\left( \frac{1}{\rho \theta }\gamma _{n} + \gamma _{j} -1\right) + (\gamma _{j} - \gamma _{n})\sum _{i \ne j, n}\pi _{i}^{*} \end{aligned}$$
(A10)

The set \(\left\{ \pi ^{*}_{i}\right\} _{i \ne j,n}\) is discrete and finite and thus compact. Therefore, it must have a set of maximal elements, one of whose members is WLOG \(\pi _{m}^{*}\). Then, from our supposition above and (A10),

$$\begin{aligned} \pi _{j}\left( \frac{1}{\rho \theta }\gamma _{j} + \gamma _{n} -1\right) \le \pi _{j}\left( \frac{1}{\rho \theta }\gamma _{n} + \gamma _{j} -1\right) + (\gamma _{j} - \gamma _{n})(n-2)\pi _{m} \end{aligned}$$

Rearranging, we obtain \(\pi _{j}^{*}\frac{1 - \rho \theta }{\rho \theta (n-2)} \le \pi _{m}^{*}\), whence we obtain \(\pi _{m}^{*} > \pi _{j}^{*} \ge \pi _{n}^{*}\). Just as we have Eq. (A10), we can also obtain in analogous fashion:

$$\begin{aligned} \pi _{m}^{*}\left( \frac{1}{\rho \theta }\gamma _{m} + \gamma _{n} -1\right) = \pi _{n}^{*}\left( \frac{1}{\rho \theta }\gamma _{n} + \gamma _{m} -1\right) + (\gamma _{m} - \gamma _{n})\sum _{i \ne m, n}\pi _{i}^{*} \end{aligned}$$

Suppose \(\pi _{j}^{*} \in \max _{i \ne m,n} \left\{ \pi ^{*}_{i}\right\} \). We must have

$$\begin{aligned} \pi _{m}^{*}\left( \frac{1}{\rho \theta }\gamma _{m} + \gamma _{n} -1\right) \le \pi _{m}^{*}\left( \frac{1}{\rho \theta }\gamma _{n} + \gamma _{m} -1\right) + (\gamma _{m} - \gamma _{n})(n-2)\pi _{j}^{*} \end{aligned}$$

Rearranging, we obtain \(\pi _{m}^{*}\frac{1 - \rho \theta }{\rho \theta (n-2)} \le \pi _{j}^{*}\), whence we obtain \(\pi _{j}^{*}> \pi _{m}^{*} > \pi _{j}^{*}\), which is obviously a contradiction. Thus \(\pi _{j}^{*} \notin \max _{i \ne m,n} \left\{ \pi ^{*}_{i}\right\} \) and so we must pick another element of that set, say \(\pi _{q}^{*}\). We must have

$$\begin{aligned} \pi _{m}^{*}\left( \frac{1}{\rho \theta }\gamma _{m} + \gamma _{n} -1\right) \le \pi _{m}^{*}\left( \frac{1}{\rho \theta }\gamma _{n} + \gamma _{m} -1\right) + (\gamma _{m} - \gamma _{n})(n-2)\pi _{q}^{*} \end{aligned}$$

Rearranging, we obtain \(\pi _{m}^{*}\frac{1 - \rho \theta }{\rho \theta (n-2)} \le \pi _{q}^{*}\), whence we obtain \(\pi _{q}^{*} > \pi _{m}^{*}\).

But this contradicts our our statement above, that \(\pi _{m}^{*}\) is a maximal element of \(\left\{ \pi ^{*}_{i}\right\} _{i \ne j,n}\). We have generated a contradiction, and since j indexed an arbitrary player, we conclude that if \(\gamma _{n} < \gamma _{i}\)\(\forall i \ne n\), then \(\pi _{n}^{*} > \pi _{i}^{*}\)\(\forall i \ne n\).

The final part of this lemma, the case where \(\gamma _{n}\) is not uniquely minimal, and there exists some \(\gamma _{k} = \gamma _{n}\) holds trivially: clearly \(\pi _{k} = \pi _{n}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitmeyer, M. Relative performance concerns among investment managers. Ann Finance 15, 205–231 (2019). https://doi.org/10.1007/s10436-019-00343-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-019-00343-2

Keywords

JEL Classification

Navigation