Skip to main content
Log in

Option pricing under fast-varying and rough stochastic volatility

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alòs, E., Yang, Y.: A closed-form option pricing approximation formula for a fractional Heston model. Economics working papers 1446, Department of Economics and Business, Universitat Pompeu Fabra

  • Bayer, C., Friz, P. K., Gulisashvili, A., Horvath, B., Stemper, B.: Short-time near-the-money skew in rough fractional volatility models. arXiv:1703.05132

  • Benaim, S., Friz, P., Lee, R.: On BlackĐScholes implied volatility at extreme strikes. In: Cont, R. (ed.) Frontiers in Quantitative Finance, Volatility and Credit Risk Modeling, pp. 19–45. Wiley: Hoboken (2009)

    Chapter  Google Scholar 

  • Bennedsen, M.: Rough electricity: a new fractal multi-factor model of electricity spot prices. Working paper. http://ssrn.com/abstract=2636829 (2015)

  • Bollerslev, T., Osterrieder, D., Sizova, N., Tauchen, G.: Risk and return: long-run relations, fractional cointegration, and return predictability. J Financ Econ 108, 409–424 (2013)

    Article  Google Scholar 

  • Breidt, F.J., Crato, N., De Lima, P.: The detection and estimation of long-memory in stochastic volatility. J Econ 83, 325–348 (1998)

    Article  Google Scholar 

  • Charfeddine, L.: True or spurious long memory in volatility: further evidence on the energy futures markets. Energy Policy 71, 76–93 (2014)

    Article  Google Scholar 

  • Chia, K.C., Bahar, A., Kane, I.L., Ting, C.-M., Rahman, H.A.: Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI. AIP Conf Proc 1643, 73 (2015)

    Article  Google Scholar 

  • Chronopoulou, A., Viens, F.G.: Estimation and pricing under long-memory stochastic volatility. Ann Finance 8, 379–403 (2012)

    Article  Google Scholar 

  • Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math Finance 8, 291–323 (1998)

    Article  Google Scholar 

  • Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quant Finance 1, 1–14 (2001)

    Article  Google Scholar 

  • Cont, R.: Long range dependence in financial markets. In: Lévy, J., Lutton, E. (eds.) Fractals in Engineering, pp. 159–179: Springer: London (2005)

  • Engle, R.F., Patton, A.J.: What good is a volatility model? Quant Finance 1, 237–245 (2001)

    Article  Google Scholar 

  • Fouque, J.-P., Hu, R.: Optimal portfolio under fractional stochastic environment. arXiv:1703.06969 (2017a)

  • Fouque, J.-P., Hu, R.: Optimal portfolio under fast mean-reverting fractional stochastic environment. arXiv:1706.03139 (2017b)

  • Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility: Cambridge University Press: Cambridge (2000)

  • Fouque, J.-P., Papanicolaou, G., Sircar, K.R., Sølna, K.: Short time scales in S&P500 volatility. J Comput Finance 6, 1–24 (2003)

    Article  Google Scholar 

  • Fouque, J.-P., Papanicolaou, G., Sircar, K. R., Sølna, K.: Timing the smile. The Wilmott magazine (2004)

    Article  Google Scholar 

  • Fouque, J.-P., Papanicolaou, G., Sircar, K.R., Sølna, K.: Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives: Cambridge University Press: Cambridge (2011)

  • Fukasawa, M.: Short-time at-the-money skew and rough fractional volatility. Quant Finance 17, 189–198 (2017)

    Article  Google Scholar 

  • Funahashi, H., Kijima, M.: Does the Hurst index matter for option prices under fractional volatility? Ann Finance 13, 55–74 (2017)

    Article  Google Scholar 

  • Garnier, J., Sølna, K.: Option pricing under fast-varying long-memory stochastic volatility. Math Finance. arXiv:1604.00105 (2016)

  • Garnier, J., Sølna, K.: Correction to Black–Scholes formula due to fractional stochastic volatility. SIAM J Financ Math 8, 560–588 (2017)

    Article  Google Scholar 

  • Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant Finance 18, 933–949 (2018)

    Article  Google Scholar 

  • Gulisashvili, A., Viens, F., Zhang, X.: Small-time asymptotics for Gaussian self-similar stochastic volatility models. arXiv:1505.05256 (2015)

  • Heston, S.L.: A closed-form solution for options with stochastic volatility with applicantions to bond and currency options. Rev Financ Stud 6, 327–343 (1993)

    Article  Google Scholar 

  • Jacquier, A., Martini, C., Muguruza, A.: On VIX futures in the rough Bergomi model. arXiv:1701.04260 (2017)

  • Kalbasi, K., Mountford, T.S., Viens, F.G.: Anderson polymer in a fractional Brownian environment: asymptotic behavior of the partition function. J Theor Probab (2017). https://doi.org/10.1007/s10959-017-0756-2

    Article  Google Scholar 

  • Livieri, G., Mouti, S., Pallavicini, A., Rosenbaum, M.: Rough volatility: evidence from option prices. IISE Trans. (2018). https://doi.org/10.1080/24725854.2018.1444297

    Article  Google Scholar 

  • Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev 10, 422–437 (1968)

    Article  Google Scholar 

  • Muravlev, A.A.: Representation of franctional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process. Russ Math Surv 66, 439–441 (2011)

    Article  Google Scholar 

  • Oh, G., Kim, S., Eom, C.: Long-term memory and volatility clustering in high-frequency price changes. Phys A Stat Mech Appl 387, 1247–1254 (2008)

    Article  Google Scholar 

  • Rypdal, M., Løvsletten, O.: Modeling electricity spot prices using mean-reverting multifractal processes. Phys A 392, 194–207 (2013)

    Article  Google Scholar 

  • Simonsen, I.: Measuring anti-correlations in the nordic electricity spot market by wavelets. Phys A 233, 597–606 (2002)

    Google Scholar 

  • Walther, T., Klein, T., Thu, H.P., Piontek, K.: True or spurious long memory in European non-EMU currencies. Res Int Bus Finance 40, 217–230 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported in part by Centre Cournot, Fondation Cournot, and Université Paris Saclay (chaire D’Alembert).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Sølna.

Appendices

Technical lemmas

We denote

$$\begin{aligned} G(z) = \frac{1}{2} \big ( F(z)^2 - \overline{\sigma }^2\big ) . \end{aligned}$$
(54)

The martingale \(\psi ^\varepsilon _t\) defined by (33) has the form

$$\begin{aligned} \psi _t^\varepsilon = \mathbb {E}\Big [ \int _0^T G(Z_s^\varepsilon ) ds \big | \mathcal{F}_t\Big ] . \end{aligned}$$
(55)

Lemma 2

\((\psi _t^\varepsilon )_{t\in [0,T]}\) is a square-integrable martingale and

$$\begin{aligned} d \left\langle \psi ^\varepsilon , W\right\rangle _t = \vartheta ^\varepsilon _{t} dt , \quad \quad \vartheta ^\varepsilon _{t} = \sigma _{\mathrm{ou}} \int _t^T \mathbb {E}\big [ G'(Z_s^\varepsilon )|\mathcal{F}_t \big ]\mathcal{K}^\varepsilon (s-t) ds . \end{aligned}$$
(56)

Proof

See Lemma B.1 in Garnier and Sølna (2016). \(\square \)

The important properties of the random process \(\vartheta ^\varepsilon _{t}\) are stated in the following lemma.

Lemma 3

  1. 1.

    The exists a constant \(K_T\) such that, for any \(t \in [0,T]\), we have almost surely

    $$\begin{aligned} \big | \sigma _t^\varepsilon \vartheta ^\varepsilon _{t} \big | \le K_T \varepsilon ^{1/2} . \end{aligned}$$
    (57)
  2. 2.

    For any \(t \in [0,T]\), we have

    $$\begin{aligned} \mathbb {E}[ \sigma _t^\varepsilon \vartheta ^\varepsilon _{t} ] = \varepsilon ^{1/2} \overline{D} + \widetilde{D}^\varepsilon _{t}, \end{aligned}$$
    (58)

    where \( \overline{D}\) is the deterministic constant (27) and \(\widetilde{D}^\varepsilon _{t}\) is smaller than \(\varepsilon ^{1/2}\):

    $$\begin{aligned} \sup _{\varepsilon \in (0,1]} \sup _{t \in [0,T]} \varepsilon ^{-1/2} \big | \widetilde{D}^\varepsilon _{t}\big | < \infty , \end{aligned}$$
    (59)

    and

    $$\begin{aligned} \forall t \in [0,T),\quad \lim _{\varepsilon \rightarrow 0} \varepsilon ^{-1/2} \big | \widetilde{D}^\varepsilon _{t}\big | =0. \end{aligned}$$
    (60)
  3. 3.

    For any \(0\le t< t' < T\), we have

    $$\begin{aligned} \lim _{\varepsilon \rightarrow 0} \varepsilon ^{-1} \big | \mathrm{Cov} \big ( \sigma _t^\varepsilon \vartheta ^\varepsilon _{t},\sigma _{t'}^\varepsilon \vartheta ^\varepsilon _{t'}\big ) \big | =0. \end{aligned}$$
    (61)

Proof

Using the expression (56) of \(\vartheta ^\varepsilon _t\):

$$\begin{aligned} \big | \vartheta ^\varepsilon _t \sigma ^\varepsilon _t \big | \le \sigma _\mathrm{ou} \Vert F\Vert _\infty \Vert G'\Vert _\infty \int _0^\infty |\mathcal{K}^\varepsilon (s)| ds \end{aligned}$$

The proof of the first item follows from the fact that \(\mathcal{K}^\varepsilon (t)=\mathcal{K}(t/\varepsilon )/\sqrt{\varepsilon }\), \(\mathcal{K} \in L^1(0,\infty )\).

The expectation of \( \sigma _t^\varepsilon \vartheta ^\varepsilon _{t} \) is equal to

$$\begin{aligned} \mathbb {E}\big [ \sigma _t^\varepsilon \vartheta ^\varepsilon _{t} \big ]= & {} \sigma _{\mathrm{ou}} \int _t^{T} \mathbb {E}\big [ F(Z^\varepsilon _t) G'(Z_s^\varepsilon ) \big ] \mathcal{K}^\varepsilon (s - t) ds \\= & {} \sigma _{\mathrm{ou}} \varepsilon ^{1/2} \int _0^{(T-t)/\varepsilon } \mathbb {E}\big [ F(Z_0^\varepsilon ) G'(Z_{\varepsilon s}^\varepsilon ) \big ] \mathcal{K}(s) ds \\= & {} \sigma _{\mathrm{ou}} \varepsilon ^{1/2} \int _0^{(T-t)/\varepsilon } \Big [\iint _{\mathbb {R}^2} F(\sigma _{\mathrm{ou}} z ) G'(\sigma _{\mathrm{ou}} z') p_{\mathcal{C}_Z(s)} (z,z') d z dz'\Big ] \mathcal{K}(s) ds, \end{aligned}$$

with \(p_C\) defined in Proposition 1.

Therefore the difference

$$\begin{aligned} \mathbb {E}\big [ \sigma _t^\varepsilon \vartheta ^\varepsilon _{t} \big ] - \varepsilon ^{1/2} \overline{D} = \sigma _{\mathrm{ou}} \varepsilon ^{1/2} \int _{(T-t)/\varepsilon }^\infty \mathbb {E}\big [ F(Z_0^\varepsilon ) G'(Z_{\varepsilon s}^\varepsilon )\big ] \mathcal{K}(s) ds \end{aligned}$$

can be bounded by

$$\begin{aligned} \big | \mathbb {E}\big [ \sigma _t^\varepsilon \vartheta ^\varepsilon _{t} \big ] - \varepsilon ^{1/2} \overline{D} \big | \le \Vert F\Vert _\infty \Vert G'\Vert _\infty \sigma _{\mathrm{ou}} \varepsilon ^{1/2} \int _{(T-t)/\varepsilon }^\infty |\mathcal{K}(s)| ds, \end{aligned}$$
(62)

which gives the second item since \(\mathcal{K} \in L^1(0,\infty )\).

Let us consider \(0 \le t \le t'\le T\). We have

$$\begin{aligned} \mathbb {E}\big [ \sigma _t^\varepsilon \vartheta ^\varepsilon _{t}\sigma _{t'}^\varepsilon \vartheta ^\varepsilon _{t'} \big ]= & {} \sigma _{\mathrm{ou}}^2 \int _t^{T} ds \mathcal{K}^\varepsilon (s-t) \int _{t'}^T ds' \mathcal{K}^\varepsilon (s' -t') \\&\times \, \mathbb {E}\Big [ \mathbb {E}\big [ F(Z^\varepsilon _t) G'(Z_s^\varepsilon )|\mathcal{F}_t \big ] \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon )|\mathcal{F}_{t'} \big ] \Big ] , \end{aligned}$$

so we can write

$$\begin{aligned} \mathrm{Cov} \big ( \sigma _t^\varepsilon \vartheta ^\varepsilon _{t} , \sigma _{t'}^\varepsilon \vartheta ^\varepsilon _{t'} \big )= & {} \sigma _{\mathrm{ou}}^2 \int _t^{T} ds \mathcal{K}^\varepsilon (s-t) \int _{t'}^T ds' \mathcal{K}^\varepsilon (s' - t') \\&\times \, \Big ( \mathbb {E}\Big [ \mathbb {E}\big [ F(Z^\varepsilon _t) G'(Z_s^\varepsilon )|\mathcal{F}_t \big ] \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon )|\mathcal{F}_{t} \big ] \Big ] \\&-\, \mathbb {E}\Big [ \mathbb {E}\big [ F(Z^\varepsilon _t) G'(Z_s^\varepsilon )|\mathcal{F}_t \big ] \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon ) \big ] \Big ] \Big ) , \end{aligned}$$

and therefore

$$\begin{aligned} \big | \mathrm{Cov} \big ( \sigma _t^\varepsilon \vartheta ^\varepsilon _{t} , \sigma _{t'}^\varepsilon \vartheta ^\varepsilon _{t'} \big ) \big |\le & {} \sigma _{\mathrm{ou}}^2 \Vert F\Vert _\infty \Vert G'\Vert _\infty \int _t^{T} ds |\mathcal{K}^\varepsilon (s-t)| \int _{t'}^T ds' |\mathcal{K}^\varepsilon (s'-t')| \\&\times \, \mathbb {E}\Big [ \big ( \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon )|\mathcal{F}_{t} \big ] - \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon ) \big ] \big )^2 \Big ]^{1/2} . \end{aligned}$$

We can write for any \(\tau >t\):

$$\begin{aligned}&Z^\varepsilon _{\tau } = A^\varepsilon _{t\tau } + B^\varepsilon _{t\tau } ,\quad A^\varepsilon _{t\tau } =\, \sigma _\mathrm{ou} \int _{-\infty }^t \mathcal{K}^\varepsilon (\tau -u)dW_u, \quad B^\varepsilon _{t\tau } = \sigma _\mathrm{ou}\int _t^{\tau } \mathcal{K}^\varepsilon (\tau -u)dW_u , \end{aligned}$$

where \(A^\varepsilon _{t\tau }\) is \(\mathcal{F}_t\) adapted while \(B^\varepsilon _{t\tau }\) is independent from \(\mathcal{F}_t\). Therefore (\(s'\ge t'\ge t\))

$$\begin{aligned}&\mathbb {E}\Big [ \big ( \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon )|\mathcal{F}_{t} \big ] - \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon ) \big ]\big )^2 \Big ]\\&= \mathbb {E}\Big [ \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon )|\mathcal{F}_{t} \big ]^2 \Big ] - \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon ) \big ]^2 \\&= \mathbb {E}\Big [ F( A^\varepsilon _{tt'} + B^\varepsilon _{tt'}) G'( A^\varepsilon _{ts'} + B^\varepsilon _{ts'}) F( A^\varepsilon _{tt'} + \tilde{B}^\varepsilon _{tt'}) G'( A^\varepsilon _{ts'} + \tilde{B}^\varepsilon _{ts'}) \\&\quad - F( A^\varepsilon _{tt'} + B^\varepsilon _{tt'}) G'( A^\varepsilon _{ts'} + B^\varepsilon _{ts'}) F( \tilde{A}^\varepsilon _{tt'} + \tilde{B}^\varepsilon _{tt'}) G'( \tilde{A}^\varepsilon _{ts'} + \tilde{B}^\varepsilon _{ts'}) \Big ] , \end{aligned}$$

where \((\tilde{A}^\varepsilon _{tt'} , \tilde{B}^\varepsilon _{tt'}, \tilde{A}^\varepsilon _{ts'} , \tilde{B}^\varepsilon _{ts'})\) is an independent copy of \(({A}^\varepsilon _{tt'} , {B}^\varepsilon _{tt'}, {A}^\varepsilon _{ts'} , {B}^\varepsilon _{ts'})\). We can then write

$$\begin{aligned}&\mathbb {E}\Big [ \big ( \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon )|\mathcal{F}_{t} \big ] - \mathbb {E}\big [ F(Z^\varepsilon _{t'}) G'(Z_{s'}^\varepsilon ) \big ]\big )^2 \Big ]\\&\quad \le \Vert F\Vert _\infty \Vert G'\Vert _\infty \mathbb {E}\Big [ \big ( F( A^\varepsilon _{tt'} + \tilde{B}^\varepsilon _{tt'}) G'( A^\varepsilon _{ts'} + \tilde{B}^\varepsilon _{ts'}) - F( \tilde{A}^\varepsilon _{tt'} + \tilde{B}^\varepsilon _{tt'}) G'( \tilde{A}^\varepsilon _{ts'} + \tilde{B}^\varepsilon _{ts'}) \big )^2 \Big ]^{1/2} \\&\quad \le C \Big ( \mathbb {E}\big [ (A^\varepsilon _{tt'} - \tilde{A}^\varepsilon _{tt'})^2 \big ]^{1/2}+ \mathbb {E}\big [ (A^\varepsilon _{ts'} - \tilde{A}^\varepsilon _{ts'})^2 \big ]^{1/2}\Big ) \\&\quad \le 2 C \Big ( \mathbb {E}\big [ (A^\varepsilon _{tt'} )^2 \big ]^{1/2}+ \mathbb {E}\big [ (A^\varepsilon _{ts'} )^2 \big ]^{1/2}\Big ) \\&\quad \le 2 C \Big [ \Big ( \sigma _\mathrm{ou}^2 \int _{-\infty }^t \mathcal{K}^\varepsilon (t'-u)^2 du \Big )^{1/2} + \Big ( \sigma _\mathrm{ou}^2 \int _{-\infty }^t \mathcal{K}^\varepsilon (s'-u)^2 du \Big )^{1/2} \Big ] \\&\quad \le 4C \sigma ^\varepsilon _{t'-t,\infty } \le {C_1} \big ( 1 \wedge (\varepsilon /(t'-t))^{1-H}\big ) , \end{aligned}$$

where we used Lemma  7 in the last inequality. Then, using the fact that \(\mathcal{K}\in L^1\), this gives

$$\begin{aligned} \big | \mathrm{Cov} \big ( \sigma _t^\varepsilon \vartheta ^\varepsilon _{t} , \sigma _{t'}^\varepsilon \vartheta ^\varepsilon _{t'} \big ) \big |\le & {} C_2 \int _t^{T} ds |\mathcal{K}^\varepsilon (s-t)| \int _{t'}^T ds' |\mathcal{K}^\varepsilon (s'-t')| \big ( 1 \wedge (\varepsilon /(t'-t)))^{(1-H)/2}\big )\\\le & {} C_3 \varepsilon \big ( 1 \wedge (\varepsilon /(t'-t)))^{(1-H)/2}\big ) , \end{aligned}$$

which proves the third item.

Lemma 4

For any smooth function f with bounded derivative, we have

$$\begin{aligned} \mathrm{Var} \big ( \mathbb {E}\big [ f(Z_{t}^\varepsilon ) |\mathcal{F}_0 \big ]\big ) \le \Vert f'\Vert _\infty ^2 (\sigma _{t,\infty }^\varepsilon )^2 . \end{aligned}$$
(63)

Proof

The conditional distribution of \(Z_t^\varepsilon \) given \(\mathcal{F}_0\) is Gaussian with mean

$$\begin{aligned} \mathbb {E}\big [ Z_t^\varepsilon |\mathcal{F}_0 \big ] = \sigma _{\mathrm{ou}} \int _{-\infty }^0 \mathcal{K}^\varepsilon (t-u) dW_u \end{aligned}$$

and variance

$$\begin{aligned} \mathrm{Var} \big ( Z_t^\varepsilon |\mathcal{F}_0\big ) = (\sigma _{0,t}^\varepsilon )^2 =\sigma _{\mathrm{ou}}^2 \int _0^{t} \mathcal{K}^\varepsilon (u)^2 du . \end{aligned}$$

Therefore

$$\begin{aligned} \mathrm{Var} \big ( \mathbb {E}\big [ f(Z_{t}^\varepsilon ) |\mathcal{F}_0 \big ]\big ) = \mathrm{Var} \Big ( \int _\mathbb {R}f\big (\mathbb {E}\big [ Z_{t}^\varepsilon |\mathcal{F}_0 \big ] +\sigma _{0,t}^\varepsilon z \big ) p(z) dz \Big ) , \end{aligned}$$

where p(z) is the pdf of the standard normal distribution. The random variable \(\mathbb {E}\big [ Z_{t}^\varepsilon |\mathcal{F}_0 \big ] \) is Gaussian with mean zero and variance \((\sigma _{t,\infty }^\varepsilon )^2\) so that

$$\begin{aligned} \mathrm{Var} \big ( \mathbb {E}\big [ f(Z_{t}^\varepsilon ) |\mathcal{F}_0 \big ]\big )= & {} \frac{1}{2} \int _\mathbb {R}\int _\mathbb {R}dz dz' p(z) p(z') \int _\mathbb {R}\int _\mathbb {R}du du' p(u) p(u') \\&\times \Big [ f\big (\sigma _{t,\infty }^\varepsilon u +\sigma _{0,t}^\varepsilon z \big ) - f\big (\sigma _{t,\infty }^\varepsilon u' +\sigma _{0,t}^\varepsilon z \big )\Big ] \\&\times \Big [ f\big (\sigma _{t,\infty }^\varepsilon u +\sigma _{0,t}^\varepsilon z' \big ) - f\big (\sigma _{t,\infty }^\varepsilon u' +\sigma _{0,t}^\varepsilon z' \big )\Big ] \\\le & {} \Vert f'\Vert _\infty ^2 (\sigma _{t,\infty }^\varepsilon )^2 \frac{1}{2} \int _\mathbb {R}\int _\mathbb {R}du du' p(u) p(u')(u-u')^2 \\= & {} \Vert f'\Vert _\infty ^2 (\sigma _{t,\infty }^\varepsilon )^2 , \end{aligned}$$

which is the desired result.

The random term \(\phi ^\varepsilon _{t}\) defined by (32) has the form

$$\begin{aligned} \phi _{t}^\varepsilon = \mathbb {E}\Big [ \int _t^T G (Z_s^\varepsilon ) ds \big | \mathcal{F}_t \Big ] , \end{aligned}$$
(64)

with G defined in (54).

Lemma 5

For any \(t \le T\), \(\phi _{t}^\varepsilon \) is a zero-mean random variable with standard deviation of order \(\varepsilon ^{1-H}\):

$$\begin{aligned} \sup _{\varepsilon \in (0,1]} \sup _{t \in [0,T]}\varepsilon ^{2H-2} \mathbb {E}[ (\phi _{t}^\varepsilon )^2] < \infty . \end{aligned}$$
(65)

Proof

For \(t\in [0,T]\) the second moment of \(\phi _{t}^\varepsilon \) is:

$$\begin{aligned} \mathbb {E}\big [ (\phi _{t}^\varepsilon )^2\big ]= & {} \mathbb {E}\Big [ \mathbb {E}\Big [ \int _t^T G (Z_s^\varepsilon ) ds \big | \mathcal{F}_t \Big ]^2 \Big ]\\= & {} \int _0^{T-t} ds \int _{0}^{T-t} ds' \mathrm{Cov}\big ( \mathbb {E}\big [ G(Z_s^\varepsilon )|\mathcal{F}_0\big ] ,\mathbb {E}\big [ G(Z_{s'}^\varepsilon )|\mathcal{F}_0\big ] \big ) . \end{aligned}$$

We have by Lemma 4

$$\begin{aligned} \mathbb {E}\big [ (\phi _{t}^\varepsilon )^2\big ]\le & {} \Big ( \int _0^{T-t} ds \mathrm{Var}\big ( \mathbb {E}\big [ G(Z_s^\varepsilon )|\mathcal{F}_0\big ]\big )^{1/2} \Big )^2\le \Vert G'\Vert _\infty ^2\Big ( \int _0^{T-t} ds \sigma _{s,\infty }^\varepsilon \Big )^2 . \end{aligned}$$

In view of Lemma 7 we then have

$$\begin{aligned} \mathbb {E}\big [ (\phi _{t}^\varepsilon )^2\big ]\le C_{T} \big ( \varepsilon +\varepsilon ^{1-H}\big )^2 \le 4 C_{T} \varepsilon ^{2-2H} , \end{aligned}$$

uniformly in \(t \le T\) and \(\varepsilon \in (0,1]\) for some constant \(C_{T}\).

Lemma 6

Let us define for any \(t \in [0,T]\):

$$\begin{aligned} {\kappa }^\varepsilon _t = \frac{\varepsilon ^{1/2}}{2} \int _0^t \big ( (\sigma _s^\varepsilon )^2 -\overline{\sigma }^2\big ) ds = \varepsilon ^{1/2} \int _0^t G(Z^\varepsilon _s) ds , \end{aligned}$$
(66)

as in (41). We have

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} \sup _{t\in [0,T]} \varepsilon ^{-1/2} \mathbb {E}\big [ ( {\kappa }^\varepsilon _t )^2\big ]^{1/2} = 0. \end{aligned}$$
(67)

Proof

Since the expectation \(\mathbb {E}[ G(Z^\varepsilon _0)]=0\), we have

$$\begin{aligned} \mathbb {E}\big [ ( {\kappa }^\varepsilon _t )^2\big ] = \varepsilon \mathbb {E}\Big [ \Big ( \int _0^t G(Z^\varepsilon _s) ds \Big )^2\Big ] = 2{\varepsilon } \int _0^t ds (t-s) \mathrm{Cov} \big ( G(Z^\varepsilon _s) , G(Z^\varepsilon _0) \big ) ds . \end{aligned}$$

We have moreover

$$\begin{aligned} \big | \mathrm{Cov} \big ( G(Z^\varepsilon _s) , G(Z^\varepsilon _0) \big )\big |= & {} \big | \mathbb {E}\big [ \big ( \mathbb {E}[G(Z^\varepsilon _s)|\mathcal{F}_0] -\mathbb {E}[G(Z^\varepsilon _s)]\big ) G(Z^\varepsilon _0) \big ]\big |\\\le & {} \Vert G\Vert _\infty \mathrm{Var} \big ( \mathbb {E}[G(Z^\varepsilon _s)|\mathcal{F}_0] \big )^{1/2} . \end{aligned}$$

By Lemma 4 we obtain

$$\begin{aligned} \big | \mathrm{Cov} \big ( G(Z^\varepsilon _s) , G(Z^\varepsilon _0) \big )\big |\le & {} \Vert G\Vert _\infty \Vert G'\Vert _\infty \sigma ^\varepsilon _{s,\infty } . \end{aligned}$$

In view of Lemma 7 we then have

$$\begin{aligned} \mathbb {E}\big [ ( {\kappa }^\varepsilon _t )^2\big ] \le C_T \varepsilon \big (\varepsilon + \varepsilon ^{1-H} \big ) \le 2 C_T \varepsilon ^{2-H} , \end{aligned}$$

uniformly in \(t \in [0,T]\) and \(\varepsilon \in (0,1]\), which gives the desired result.

Lemma 7

Define

$$\begin{aligned} \sigma ^\varepsilon _{t,\infty } = \sigma _\mathrm{ou} \left( \int _t^\infty \mathcal{K}^\varepsilon (s)^2 ds \right) ^{1/2} , \end{aligned}$$
(68)

Then there exists \(C>0\) such that

$$\begin{aligned} \sigma ^\varepsilon _{t,\infty } \le C \big ( 1 \wedge (\varepsilon /t)^{1-H}\big ) . \end{aligned}$$
(69)

Proof

This follows from \(|\mathcal{K}(s)| \le K s^{H-\frac{3}{2}}\) for \(s \ge 1\) and \(\mathcal{K}\in L^2\).

An alternative model

In Comte and Renault (1998); Funahashi and Kijima (2017) the authors consider a stochastic volatility model that is a kind of fractional Orstein-Uhlenbeck process, but they consider the following representation of the fractional Brownian motion:

$$\begin{aligned} W^{H,0}_t= \frac{1}{\varGamma (H+\frac{1}{2})} \int _0^t (t-s)^{H-\frac{1}{2}}dW^0_s , \end{aligned}$$
(70)

where \((W^0_t)_{t \in \mathbb {R}^+}\) is a standard Brownian motion over \(\mathbb {R}^+\). \((W^{H,0}_t)_{t \in \mathbb {R}^+}\) is a zero-mean self-similar Gaussian process, in the sense that \((\alpha ^H W^{H,0}_{t/\alpha })_{t \in \mathbb {R}^+} \) and \((W_t^{H,0})_{t \in \mathbb {R}^+}\) have the same distribution, but it is not stationary, nor does it have stationary increments. Its variance is

$$\begin{aligned} \mathbb {E}\big [ (W_{t}^{H,0})^2 \big ]= \frac{1}{2H \varGamma (H+\frac{1}{2})^2} t^{2H}, \end{aligned}$$

while the variance of its increment is (for \(s>0\)):

$$\begin{aligned} \mathbb {E}\big [ (W_{t+s}^{H,0}-W_t^{H,0})^2 \big ] = \frac{1}{\varGamma (H+\frac{1}{2})^2} \Big [ \int _0^{t/s} \big ( (1+u)^{H-\frac{1}{2}}-u^{H-\frac{1}{2}}\big )^2 du +\frac{1}{2H}\Big ] {s}^{2H} , \end{aligned}$$

which has the following behavior

$$\begin{aligned} \mathbb {E}\big [ (W_{t+s}^{H,0}-W_t^{H,0})^2 \big ] {\mathop {\longrightarrow }\limits ^{t \rightarrow +\infty }} \frac{1}{\varGamma (2H+1)\sin (\pi H)} {s}^{2H} . \end{aligned}$$

This model is special because time zero plays a special role, and we think it is desirable to deal with the stationary situation addressed in this paper. However, it turns out that the two models give the same result in the fast-varying case. Indeed, the modified fOU process corresponding to (70) is [to be compared with (4)]:

$$\begin{aligned} Z^{\varepsilon ,0}_t= & {} Z_0 e^{-t/\varepsilon } +\varepsilon ^{-H} \int _0^t e^{-\frac{t-s}{\varepsilon }} dW^{H,0}_s \nonumber \\= & {} Z_0 e^{-t/\varepsilon } +\varepsilon ^{-H} W^{H,0}_t - \varepsilon ^{-H-1} \int _0^t e^{-\frac{t-s}{\varepsilon }} W^{H,0}_s ds , \end{aligned}$$
(71)

where \(Z_0\) is considered as a constant as in Comte and Renault (1998), Funahashi and Kijima (2017). In terms of the Brownian motion \(W^0_t\) this reads:

$$\begin{aligned} Z^{\varepsilon ,0}_t =Z_0 e^{-t/\varepsilon }+ \sigma _{\mathrm{ou}} \int _0^t \mathcal{K}^\varepsilon (t-s) dW^0_s, \end{aligned}$$
(72)

where \(\mathcal{K}^\varepsilon \) is defined in (10). It is a Gaussian process with the following covariance (\(t,s\ge 0\)):

$$\begin{aligned} \mathrm{Cov} \big ( Z^{\varepsilon ,0}_t , Z^{\varepsilon ,0}_{t+s} \big ) = \sigma ^2_{\mathrm{ou}} \mathcal{C}_{t/\varepsilon }^0 \Big (\frac{s}{\varepsilon }\Big ) , \end{aligned}$$

that is a function of \(t/\varepsilon \) and \(s/\varepsilon \) with

$$\begin{aligned} \mathcal{C}_t^0(s) = \int _0^t \mathcal{K}(u) \mathcal{K}(u+s)du. \end{aligned}$$

Note that

$$\begin{aligned} \mathcal{C}_t^0(s) {\mathop {\longrightarrow }\limits ^{t \rightarrow +\infty }} \int _0^\infty \mathcal{K}(u) \mathcal{K}(u+s)du = \mathcal{C}_Z(s) , \end{aligned}$$

with \(\mathcal{C}_Z\) defined by (6). In other words, except for a small period of time just after time 0 which is of duration of the order of \(\varepsilon \), the modified process has the same behavior as the one introduced in this paper. One can then check the detailed calculations carried out in this paper and find that Proposition 1 still holds true with the modified model \(Z^{\varepsilon ,0}_t\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garnier, J., Sølna, K. Option pricing under fast-varying and rough stochastic volatility. Ann Finance 14, 489–516 (2018). https://doi.org/10.1007/s10436-018-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-018-0325-4

Keywords

JEL Classification

Navigation