Skip to main content

Advertisement

Log in

Lysozyme Expression by Breast Carcinomas, Correlation With Clinicopathologic Parameters, and Prognostic Significance

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background:Here we evaluate the expression and prognostic value of lysozyme, a milk protein that is also synthesized by a significant percentage of breast carcinomas, in women with breast cancer.

Methods:Lysozyme expression was examined by immunohistochemical methods in a series of 177 breast cancer tissue sections. Staining was quantified by using the HSCORE system, which considers both the intensity and the percentage of cells staining at each intensity. The prognostic value of lysozyme was retrospectively evaluated by multivariate analysis that took into account conventional prognostic factors.

Results:A total of 126 of 177 carcinomas (69.4%) stained positive for this protein, but there were clear differences among them with regard to the intensity and percentage of stained cells. Lysozyme values were higher in well-differentiated and moderately differentiated tumors than in poorly differentiated tumors (P < .05). Similarly, lysozyme levels were higher in small and node-negative tumors than in large and node-positive tumors (P < .05). Moreover, results indicated that low lysozyme content predicted shorter relapse-free survival and overall survival (P < .005). Separate Cox multivariate analysis in subgroups of patients as defined by node status showed that lysozyme expression was an independent prognostic factor able to predict both relapse-free survival and overall survival in node-negative patients (P < .05).

Conclusions:Tumoral expression of lysozyme is associated with lesions of favorable evolution in breast cancer. This milk protein may be a new prognostic factor in patients with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fleming A. On a remarkable bacteriolitic element found in tissues and secretions. Proc R Soc London 1922;B93:306–317.

    Article  Google Scholar 

  2. Biggar WD, Sturgess JM. Role of lysozyme in the microbicidal activity of rat alveolar macrophages. Infect Immun 1977;16:974–982.

    PubMed  CAS  Google Scholar 

  3. Klokars ML, Robers P. Stimulation of phagocytosis by human lysozyme. Acta Haematol 1976;52:289–295.

    Article  Google Scholar 

  4. Petrakis NL. Physiologic, biochemical and cytologic aspects of the nipple aspirate fluid. Breast Cancer Res Treat 1986;8:7–19.

    PubMed  CAS  Google Scholar 

  5. Sánchez LM, Vizoso F, Díez-Itza I, López-Otín C. Identification of the major protein components in breast secretions from women with benign and malignant breast diseases. Cancer Res 1992;52:95–100.

    PubMed  Google Scholar 

  6. Vizoso F, Sánchez LM, Díez-Itza I, Lamelas ML, López-Otín C. Factors affecting protein composition of breast secretions from nonlactating women. Breast Cancer Res Treat 1992;23:251–258.

    PubMed  CAS  Google Scholar 

  7. Vizoso F, Díez-Itza I, Sánchez LM, Ruibal A, López-Otín C. Relationship between prolactin levels and composition of breast secretions in nonlactating women. J Clin Endocrinol Metab 1994;79:525–529.

    PubMed  CAS  Google Scholar 

  8. Bundred NJ, Miller WR, Walker RA. An immunohistochemical study of the tissue distribution of the breast cyst fluid protein Zn-α2-glycoprotein. Histopathology 1987;11:603–610.

    PubMed  CAS  Google Scholar 

  9. Díez-Itza I, Sánchez LM, Allende MT, Vizoso F, Ruibal A, López-Otín C. Zn-alpha2-glycoprotein levels in breast cancer cytosols and correlation with clinical, histological and biochemical parameters. Eur J Cancer 1993;29A:1256–1260.

    PubMed  Google Scholar 

  10. Díez-Itza I, Vizoso F, Merino AM, et al. Expression and prognostic significance of apolipoprotein D in breast cancer. Am J Pathol 1994;144:310–320.

    PubMed  Google Scholar 

  11. Mazoujian G, Parish TM, Haagensen DE, Jr. Immunoperoxidase localization of GCDFP-15 with mouse monoclonal antibodies versus rabbit antiserum. J Histochem Cytochem 1988;36:377–382.

    PubMed  CAS  Google Scholar 

  12. Wurster K, Heberling D, Rapp W. Carcinoembryonic antigen (CEA) and lactoferrin (LF) in benign and malignant disease of the breast. A contribution to be immunohistochemical demonstration of marker substances. Geburtshilfe Frauenheilkd 1980;40:412–422.

    Article  PubMed  CAS  Google Scholar 

  13. Charpin C, Lachard A, Poureau-Schneider N. Localization of lactoferrin and nonspecific cross-reacting antigen in human breast carcinomas. Cancer 1985;55:2612–2617.

    PubMed  CAS  Google Scholar 

  14. Simickova M, Lang BA, Rejhar A, Cernoch M, Sakalova J, Pacovsky Z. Immunohistochemical localization of alpha-lactalbumin in human breast cancer tissue. Neoplasma 1989;36:11–20.

    PubMed  CAS  Google Scholar 

  15. Bloom HJG, Richardson WW. Histological grading and prognosis in breast cancer. r J Cancer 1957;11:359–377.

    CAS  Google Scholar 

  16. Vaitukaitis JL. Production of antisera with small doses of immunogen: multiple intradermal injections. Methods Enzymol 1981;73:46–52.

    Article  PubMed  CAS  Google Scholar 

  17. McCarty KS, Szabo E, Flowers JL, et al. Use of a monoclonal anti-estrogen receptor antibody in the inmunohistochemical evaluation of human tumors. Cancer Res 1986;46:4244–4248.

    Google Scholar 

  18. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457–481.

    Google Scholar 

  19. Mantel M, Myers M. Problems of convergence of maximum likelihood iterative procedures in multiparameter situations. J Am Stat Assoc 1971;66:484–491.

    Google Scholar 

  20. Cox DR. Regression models and life tables. J R Stat Soc B 1972;34:187–220.

    Google Scholar 

  21. Dixon WJ, Brown MB, Engelman L, et al. BMDP statistical software. Berkeley University of California Press: Berkeley, CA, 1985.

    Google Scholar 

  22. Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 1989;60:1049–1106.

    Google Scholar 

  23. Ginsburg E, Vonderhaar BK. Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 1995;55:2591–2595.

    CAS  PubMed  Google Scholar 

  24. Holdaway MI, Friesen HG. Hormone binding by human mammary carcinoma. Cancer Res 1977;37:1946–1952.

    PubMed  CAS  Google Scholar 

  25. Partridge RK, Hahnel R. Prolactin receptors in human breast carcinoma. Cancer 1979;43:643–646.

    PubMed  CAS  Google Scholar 

  26. Turcot Lemay L, Kelly PA. Prolactin in human breast tumors. J Natl Cancer Inst 1982;68:381–383.

    PubMed  CAS  Google Scholar 

  27. Bonneterre J, Peyrat JP, Vandewalle B, Beuscart R, Vie MC, Cappelaere P. Prolactin receptors in human breast cancer. Eur J Cancer Clin Oncol 1982;18:1157–1162.

    PubMed  CAS  Google Scholar 

  28. Touraine F, Martini JF, Zafrani B, et al. Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocrinol Metab 1998;83:667–674.

    PubMed  CAS  Google Scholar 

  29. Peyrat JP, Djiane J, Bonneterre J, et al. Stimulation of DNA synthesis by prolactin in human breast tumor explants. Relation to prolactin receptors. Anticancer Res 1984;4:257–262.

    PubMed  CAS  Google Scholar 

  30. Bonneterre J, Peyrat JP, Beuscart R, Demaille A. Biological and clinical aspects of prolactin receptors (PRL-R) in human breast cancer. J Steroid Biochem Mol Biol 1990;37:977–981.

    PubMed  CAS  Google Scholar 

  31. Myal Y, Robinson DB, Iwasiow B, Tsuyuki D, Wong P, Shiu RP. The prolactin-inducible protein (PIP/GCDFP) gene: cloning structure and regulation. Mol Cell Endocrinol 1991;80:165–175.

    PubMed  CAS  Google Scholar 

  32. Fuch G, Wells J. Prolactin receptor antagonists that inhibit the growth of breast cancer cell lines. J Biol Chem 1995;22:13133–13137.

    Google Scholar 

  33. Bontental M, Foekens JA, Lamberts SW, et al. Feasibility, endocrine and anti-tumour effects of a triple endocrine therapy with tamoxifen, a somatostatin analogue and an antiprolactin in post-menopausal metastatic breast cancer: a randomized study with long-term follow-up. Br J Cancer 1998;77:115–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Vizoso PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vizoso, F., Plaza, E., Vázquez, J. et al. Lysozyme Expression by Breast Carcinomas, Correlation With Clinicopathologic Parameters, and Prognostic Significance. Ann Surg Oncol 8, 667–674 (2001). https://doi.org/10.1007/s10434-001-0667-3

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10434-001-0667-3

KeyWords:

Navigation