Skip to main content

Advertisement

Log in

An Allele-Specific Polymerase Chain Reaction Method for the Determination of the D85Y Polymorphism in the Human UDPGlucuronosyltransferase 2B15 Gene in a Case-Control Study of Prostate Cancer

  • Editorial
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background: UDP-glucuronosyltransferase 2B15 (UGT2B15) catalyzes the inactivation of dihydrotestosterone (DHT) by forming the DHT-glucuronide and is expressed in normal and hyperplastic prostate tissue. Alterations in the activity of this enzyme could be a major contributing factor to the bioavailability of androgens in target tissue such as the prostate.

Methods: A polymorphism (D85 to Y85) has been identified in the UGT2B15 gene1 that results in a 50% reduction in enzyme activity. Previously, detection of the polymorphic nucleotide has required direct sequencing. We have developed and validated an allele-specific polymerase chain reaction (PCR) assay to identify the polymorphic base pair in the UGT2B15 gene. This assay was used to examine the distribution of the UGT2B15 polymorphism in a small case-control group (64 cases and 64 controls) from a prostate cancer study.

Results: The results of this analysis show that prostate cancer patients were significantly more likely to be homozygous for the lower activity D85 UGT2B15 allele than control individuals (41% versus 19%, respectively, odds ratio 5 3.0 (95% confidence intervals 1.3– 6.5)).

Conclusions: These results suggest that individuals who are homozygous for the lower activity allele may be at increased risk for developing prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Levesque E, Beaulieu M, Green MD, Tephly TR, Belanger A, Hum DW. Isolation and characterization of UGT2B15(Y85): a UDP-glucuronosyltransferase encoded by a polymorphic gene.Pharmacogenetics 1997;7:317–325.

    PubMed  CAS  Google Scholar 

  2. Burchell B, Nebert DW, Nelson DR, et al. The UDP glucuronosyltransferase gene superfamily: suggested nomenclature based on evolutionary divergence. DNA Cell Biol 1991;10:487–494.

    Article  PubMed  CAS  Google Scholar 

  3. Mackenzie PI, Owens IS, Burchell B, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 1997;7:255–269.

    PubMed  CAS  Google Scholar 

  4. Strassburg CP, Nguyen N, Manns MP, Tukey RH. Polymorphic expression of the UDP-glucuronosyltransferase UGT1A gene locus in human gastric epithelium. Mol Pharmacol 1998;54:647–654.

    PubMed  CAS  Google Scholar 

  5. Iyanagi T. Molecular basis of multiple UDP-glucuronosyltransferase isoenzyme deficiencies in the hyperbilirubinemic rat (Gunn rat). J Biol Chem 1991;266:24048–24052.

    PubMed  CAS  Google Scholar 

  6. Monaghan G, Clarke DJ, Povey S, See CG, Boxer M, Burchell B. Isolation of a human YAC contig encompassing a cluster of UGT2 genes and its regional localization to chromosome 4q13. Genomics 1994;23:496–499.

    PubMed  CAS  Google Scholar 

  7. Ritter JK, Chen F, Sheen YY, Tran HM, Kimura S, Yeatman MT, Owens IS. A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem 1992;267:3257–3261.

    PubMed  CAS  Google Scholar 

  8. Cappiello M, Giuliani L, Pacifici GM. Distribution of UDP-glucuronosyltransferase and its endogenous substrate uridine 5’- diphosphoglucuronic acid in human tissues. Eur J Clin Pharmacol 1991;41:345–350.

    PubMed  CAS  Google Scholar 

  9. Ilett KF, Tee LB, Reeves PT, Minchin RF. Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol Ther 1990;46:67–93.

    PubMed  CAS  Google Scholar 

  10. Mulder GJ. Glucuronidation and its role in regulation of biological activity of drugs. Annu Rev Pharmacol Toxicol 1992;32:25–49.

    PubMed  CAS  Google Scholar 

  11. Green MD, Oturu EM, Tephly TR. Stable expression of a human liver UDP-glucuronosyltransferase (UGT2B15) with activity toward steroid and xenobiotic substrates. Drug Metab Dispos 1994; 22:799–805.

    PubMed  CAS  Google Scholar 

  12. Belanger G, Beaulieu M, Marcotte B, Levesque E, Guillemette C, Hum DW, and Belanger A. Expression of transcripts encoding steroid UDP-glucuronosyltransferases in human prostate hyperplastic tissue and the LNCaP cell line. Mol Cell Endocrinol 1995;113:165–173.

    PubMed  CAS  Google Scholar 

  13. Whittemore AS, Kolonel LN, Wu AH, et al. Prostate cancer in relation to diet, physical activity, and body size in blacks, whites, and Asians in the United States and Canada [see comments]. J Natl Cancer Inst 1995;87:652–661.

    PubMed  CAS  Google Scholar 

  14. Ross RK, Coetzee GA, Reichardt J, Skinner E, Henderson E. Does the racial-ethnic variation in prostate cancer risk have a hormonal basis? Cancer Supplement 1995; 75:1778–1782.

    Google Scholar 

  15. Carter BS, Steinberg GD, Beaty TH, Childs B, Walsh PC. Familial risk factors for prostate cancer. Cancer Surveys 1991;11:5–13.

    PubMed  CAS  Google Scholar 

  16. Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A 1992;89:3367–3371.

    PubMed  CAS  Google Scholar 

  17. Carter BS, Bova GS, Beaty TH, Steinberg GD, Childs B, Isaacs WB, Walsh PC. Hereditary prostate cancer: epidemiologic and clinical features. J Urol 1993;150:797–802.

    PubMed  CAS  Google Scholar 

  18. Steinberg GD, Carter BS, Beaty TH, Childs B, Walsh PC. Family history and the risk of Prostate cancer. Prostate 1990;17:337–347.

    PubMed  CAS  Google Scholar 

  19. Geller J, Albert J, de laVega D, Loza D, Stoeltzing W. Dihydrotestosterone concentration in prostate cancer tissue as a predictor of tumor differentiation and hormonal dependency. Cancer Res 1978;38:4349–4352.

    PubMed  CAS  Google Scholar 

  20. Cussenot O, Valeri A, Berthon P, Fournier G, Mangin P. Hereditary prostate cancer and other genetic predispositions to prostate cancer. Urol Int 1998;60(Suppl 2):30–34; discussion 35.

    PubMed  Google Scholar 

  21. Klus GT, Nakamura J, Li JS, et al. Growth inhibition of human prostate cells in vitro by novel inhibitors of androgen synthesis. Cancer Research 1996;56:4956–4964.

    PubMed  CAS  Google Scholar 

  22. Lunn RM, Bell DA, Mohler JL, Taylor JA. Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). Carcinogenesis 1999;20:1727–1731.

    PubMed  CAS  Google Scholar 

  23. Makridakis N, Ross RK, Pike MC, et al. A prevalent missense substitution that modulates activity of prostatic steroid 5alphareductase. Cancer Res 1997;57:1020–1022.

    PubMed  CAS  Google Scholar 

  24. Nowell SA, Leakey JE, Warren JF, Lang NP, Frame LT. Identi-fication of enzymes responsible for the metabolism of heme in human platelets. J Biol Chem 1998;273:33342–346.

    PubMed  CAS  Google Scholar 

  25. Labrie F, Dupont A, Simard J, Luu-The V, Belanger A. Intracrinology: the basis for the rational design of endocrine therapy at all stages of prostate cancer. Eur Urol 1993;24:94–105.

    PubMed  Google Scholar 

  26. Labrie F, Belanger A, Simard J, Luu-The V, Labrie C. “Intracrinology”. Autonomy and freedom of peripheral tissues [in French]. Annales d Endocrinologie 1995;56:23–29.

    PubMed  CAS  Google Scholar 

  27. Lorence MC, Corbin CJ, Kamimura N, Mahendroo MS, Mason JI. Structural analysis of the gene encoding human 3 beta-hydroxysteroid dehydrogenase/delta 5–4-isomerase. Mol Endocrinol 1990;4:1850–1855.

    Article  PubMed  CAS  Google Scholar 

  28. Andersson S, Bishop RW, Russell DW. Expression cloning and regulation of steroid 5 alpha-reductase, an enzyme essential for male sexual differentiation. J Biol Chem 1989;264:16249–16255.

    PubMed  CAS  Google Scholar 

  29. Labrie F, Simard J, Luu-The V, et al. Structure and tissue-specific expression of 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase genes in human and rat classical and peripheral steroidogenic tissues. J Steroid Biochem Mol Biol 1992;41:421–435.

    PubMed  CAS  Google Scholar 

  30. Labrie F, Sugimoto Y, Luu-The V, et al. Structure of human type II 5 alpha-reductase gene. Endocrinology 1992;131:1571–1573.

    PubMed  CAS  Google Scholar 

  31. Sun XY, Plouzek CA, Henry JP, Wang TT, Phang JM. Increased UDP-glucuronosyltransferase activity and decreased prostate specific antigen production by biochanin A in prostate cancer cells. Cancer Res 1998;58:2379–2384.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart L. MacLeod PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLeod, S.L., Nowell, S., Plaxco, J. et al. An Allele-Specific Polymerase Chain Reaction Method for the Determination of the D85Y Polymorphism in the Human UDPGlucuronosyltransferase 2B15 Gene in a Case-Control Study of Prostate Cancer. Ann Surg Oncol 7, 777–782 (2000). https://doi.org/10.1007/s10434-000-0777-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10434-000-0777-3

Key Words

Navigation