Skip to main content
Log in

Numerical simulation investigation on the suction stroke and blowing stroke of synthetic jet circulation control

合成射流吹/吸程环量控制数值模拟研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper numerically simulates synthetic jet (SJ) for circulation control on a NACA0015 airfoil, and analyzes the control mechanism of suction stroke and blowing stroke through the calculated flow field results. The Reynolds number (Re) based on the airfoil chord length (c) and the oncoming flow velocity (U) was 250000. The SJ slots are respectively arranged at the upper trailing edge (TE) and the lower TE of the airfoil. The results show that applying the SJ control at the upper TE and the lower TE has a significant effect on lift enhancement, whose control effect is related to momentum coefficient (Cμ) and reduced frequency (F+). Both the suction stroke and blowing stroke of SJ contribute to lift enhancement. When the upper trailing-edge jet is applied, the control effect on lift enhancement is slightly weakened with the increase of the reduced frequency. Conversely, the control effect of the lower trailing-edge jet increases as the reduced frequency increases. Whether the SJ is arranged on the upper TE or the lower TE, the control effect increases as the momentum coefficient increases.

摘要

通过数值模拟手段在NACA0015翼型上对合成射流环量控制过程进行了研究, 并通过流场结果分析了吸程和吹程的控制机制.基于翼型弦长(c)和来流速度(U&infin)的雷诺数(Re)为250000. 合成射流出口分别布置在翼型的上后缘和下后缘. 结果表明, 在上后缘和下后缘施加合成射流控制有显著增升效果, 其控制效果与动量系数(C&mu)和无量纲频率(F+)有关. 合成射流的吹程和吸程都有助于提升升力.当上后缘施加合成射流控制时, 增升效果随无量纲频率增加略有减弱. 相反地, 下后缘合成射流控制效果随无量纲频率增加而增加. 无论合成射流环量控制布置在上后缘或下后缘, 控制效果都随着动量系数的增加而增加.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

AOA:

Angle of attack

AOF:

Angle of deflection

CC:

Circulation control

C p :

Pressure coefficient

C D :

Drag coefficient

C L :

Lift coefficient

C μ :

Momentum coefficient

c :

Chord length

ΔC L :

Lift increment

ΔC L/C μ :

Efficiency-cost ratio

F + :

Reduced frequency

f :

Excitation frequency of SJ

h :

Slot height

I j :

Momentum of SJ

l :

Characteristic length

LTE:

Lower trailing edge

Ma :

Mach number

ρ j :

Density of SJ

ρ :

Density of the incoming flow

P :

Total pressure

P :

Pressure of the free stream

PZT:

Piezoelectric

Re :

Reynolds number

SJ:

Synthetic jet

SJA:

Synthetic jet actuator

T:

A cycle of SJ

TE:

Trailing edge

U :

The oncoming flow velocity

U j :

The maximum amplitude of jet velocity

UTE:

Upper TE

u j(t):

Jet velocity

r :

Coanda radius

References

  1. P. F. Zhang, B. Yan, and C. F. Dai, Lift enhancement method by synthetic jet circulation control, Sci. China Tech. Sci. 55, 2585 (2012).

    Article  Google Scholar 

  2. R. J. Englar, and R. M. Williams, Test techniques for high lift, two-dimensional airfoils with boundary layer and circulation control for application to rotary wing aircraft, Can. Aeronaut. Space J. 19, 93 (1973).

    Google Scholar 

  3. C. Warsop, M. Forster, and W. Crowther, in NATO AVT-239 Task Group: Supercritical Coanda based circulation control and fluidic thrust vectoring: Proceedings of AIAA Scitech Forum 2019-0044, San Diego, 2019.

  4. A. Dumitrache, F. Frunzulica, H. Dumitrescu, and V. Cardos, Blowing jets as a circulation flow control to enhancement the lift of wing or generated power of wind turbine, Incas Bull. 6, 33 (2014).

    Article  Google Scholar 

  5. R. J. Englar, G. S. Jones, B. G. Allan, and J. C. Lin, in 2-D circulation control airfoil benchmark experiments intended for CFD code validation: Proceedings of AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition 2009-902, Orlando, 2009.

  6. N. Shah, W. Chi, and K. Kontis, in Active flow control using steady and pulsed blowing at subsonic speeds: Proceedings of AIAA Aerospace Sciences Meeting & Exhibit 2008-742, Reno, 2008.

  7. G. S. Jones, and R. J. Englar, in Advances in pneumatic-controlled high-lift systems through pulsed blowing: Proceedings of Applied Aerodynamics Conference 2003-3411, Orlando, 2003.

  8. Y. Lei, Y. Zhang, D. Zhang, and G. Su, Pulsed jet characteristics of circulation control airfoil, IOP Conf. Ser.-Earth Environ. Sci. 585, 012170 (2020).

    Article  Google Scholar 

  9. M. Kotsonis, R. Pul, and L. L. Veldhuis, in Experimental study on airfoil circulation control using plasma actuators: Proceedings of AIAA Applied Aerodynamics Conference 2013-3164, San Diego, 2013.

  10. D. Greenblatt, Y. Kastantin, C. N. Nayeri, and C. O. Paschereit, Delta-wing flow control using dielectric barrier discharge actuators, AIAA J. 46, 1554 (2008).

    Article  Google Scholar 

  11. L. H. Feng, T. Y. Shi, and Y. G. Liu, Lift enhancement of an airfoil and an unmanned aerial vehicle by plasma Gurney flaps, AIAA J. 55, 1622 (2017).

    Article  Google Scholar 

  12. Y. H. Zhang, D. C. Zhang, L. Li, W. J. Zheng, and H. Luo, in Experimental study on aerodynamic properties of circulation control airfoil with plasma jet: Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (Springer, Singapore, 2018).

    Google Scholar 

  13. D. Greenblatt, and D. R. Williams, Flow control for unmanned air vehicles, Annu. Rev. Fluid Mech. 54, 383 (2022).

    Article  MATH  Google Scholar 

  14. P. F. Zhang, J. J. Wang, and L. H. Feng, Review of zero-net-mass-flux jet and its application in separation flow control, Sci. China Ser. E-Technol. Sci. 51, 1315 (2008).

    Article  Google Scholar 

  15. H. Zhu, W. Hao, C. Li, and Q. Ding, Simulation on flow control strategy of synthetic jet in an vertical axis wind turbine, Aerosp. Sci. Tech. 77, 439 (2018).

    Article  Google Scholar 

  16. E. Montazer, M. Mirzaei, E. Salami, T. A. Ward, F. I. Romli, and S. N. Kazi, Optimization of a synthetic jet actuator for flow control around an airfoil, IOP Conf. Ser.-Mater. Sci. Eng. 152, 012023 (2016).

    Article  Google Scholar 

  17. F. Sonkaya, S. Cadirci, and D. Erdem, Flow separation control on NACA0015 airfoil using synchronized jet actuator, J. Appl. Fluid Mech. 15, 427 (2022).

    Google Scholar 

  18. P. Itsariyapinyo, and R. N. Sharma, Large eddy simulation of a NACA0015 circulation control airfoil using synthetic jets, Aerosp. Sci. Tech. 82–83, 545 (2018).

    Article  Google Scholar 

  19. E. Smyk, S. Wawrzyniak, and K. Peszyński, Synthetic jet actuator with two opposite diaphragms, Mech. Mech. Eng. 24, 17 (2020).

    Article  Google Scholar 

  20. P. Gil, and E. Smyk, Synthetic jet actuator efficiency based on the reaction force measurement, Sens. Actuat. A-Phys. 295, 405 (2019).

    Article  Google Scholar 

  21. S. Li, Z. Luo, X. Deng, Z. Liu, T. Gao, and Z. Zhao, Lift enhancement based on virtual aerodynamic shape using a dual synthetic jet actuator, Chin. J. Aeronaut (2022).

  22. R. C. Swanson, and C. L. Rumsey, Computation of circulation control airfoil flows, Comput. Fluids 38, 1925 (2009).

    Article  MATH  Google Scholar 

  23. K. Paschal, D. Neuhart, G. Beeler, and B. Allan, in Circulation control model experimental database for CFD validation: Proceedings of AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2012-0705, Nashville, 2012.

  24. L. Li, D. C. Zhang, and Y. H. Zhang, Study on flow characteristic of plasma circulation control based on CFD (in Chinese), Aeronaut. Comput. Tech. 46, 57 (2016).

    Google Scholar 

  25. Y. P. Song, X. G. Yang, Y. C. Li, and F. Chen, Numerical simulation of Coanda effect in circulation control airfoil (in Chinese), J. Eng. Thermophys. 031, 1475 (2010).

    Google Scholar 

  26. A. F. Shahrabi, The control of flow separation: Study of optimal open loop parameters, Phys. Fluids 31, 035104 (2019).

    Article  Google Scholar 

  27. Z. Liu, Z. Luo, Q. Liu, and Y. Zhou, Modulation of driving signals in flow control over an airfoil with synthetic jet, Chin. J. Aeronaut. 33, 3138 (2020).

    Article  Google Scholar 

  28. K. Pooya, Active Flow Control Over a NACA0015 Airfoil by Synthetic Jet Actuators, Dissertation for Doctoral Degree (Clarkson University, Potsdam, 2012).

    Google Scholar 

  29. Z. Zhao, Z. Luo, B. Xu, X. Deng, Y. Guo, W. Peng, and S. Li, Novel lift enhancement method based on zero-mass-flux jets and its adaptive controlling laws design, Acta Mech. Sin. 37, 1567 (2021).

    Article  Google Scholar 

  30. Z. Y. Liu, Z. B. Luo, X. X. Yuan, and G. H. Tu, Review of controlling flow separation over airfoils with periodic excitation (in Chinese), Adv. Mech. 50, 221 (2020).

    Google Scholar 

  31. X. Chen, and J. Y. Tang, Study on flow mechanism of circulation control flap system (in Chinese), Mech. Sci. Technol. Aerosp. Eng. 37, 1799 (2018).

    Google Scholar 

  32. H. Y. Xu, C. L. Qiao, H. Q. Yang, and Z. Y. Ye, Active circulation control on the blunt trailing edge wind turbine airfoil, AIAA J. 56, 554 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972369, 52075538 and 11872374), and the Youth Science and Technology Innovation Award funded project of National University of Defense Technology (Grant No. 434517314).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenbing Luo  (罗振兵) or Xiong Deng  (邓雄).

Additional information

Author contributions

Shiqing Li and Zhenbing Luo designed the research. Shiqing Li, Xiong Deng and Lin Wang wrote the first draft of the manuscript. Shiqing Li, Jiefu Liu and Zhijie Zhao set up the simulation and processed the data. Zhenbing Luo and Lin Wang helped organize the manuscript. Shiqing Li and Zhenbing Luo revised and edited the final version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Luo, Z., Deng, X. et al. Numerical simulation investigation on the suction stroke and blowing stroke of synthetic jet circulation control. Acta Mech. Sin. 39, 322352 (2023). https://doi.org/10.1007/s10409-022-22352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22352-x

Keywords

Navigation