Skip to main content
Log in

Lagrangian analysis on structure evolution and mass transport of circular and noncircular turbulent synthetic jets

圆和非圆湍流合成射流结构演化和质量输运的拉格朗日方法分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Fluid entrainment is of particular significance for the applications of synthetic jets in flow control. We investigate the structure evolution and transient fluid entrainment by the vortex rings in turbulent synthetic jets. Two orifice configurations of circular and rectangular with the aspect ratio of 3 are examined at the same parameters. Time-resolved tomographic particle image velocimetry is used to acquire the three-dimensional flow field information. The analysis based on Lagrangian coherent structures is used to visualize topology deformation of the vortex ring, describe mass transport and quantify entrainment by successive vortex rings. Particularly, the traditional method of the moving reference frame of the vortex ring cannot be effectively applied to the rectangular case due to non-uniform azimuthal translational velocity on the vortex ring. A new approach based on identifying the vortex boundaries by the finite-time Lyapunov exponent ridges is adopted to estimate the volume of the vortex bubble and thus to calculate entrainment and kinetic energy fractions. The results show that the rectangular case generally entrains more ambient fluids, resulting in larger vortex strength than the circular case. Furthermore, more kinetic energy from the ejected fluids is absorbed by the rectangular case to sustain the axis switching of the vortex ring. That could be beneficial for jet mixing enhancement. The current study develops the mathematic description of the dynamics of vortex rings, which can provide an important reference for quantifying fluid entrainment by the vortex rings in flow control applications.

摘要

旋涡卷吸特性对合成射流的流动控制应用具有重要意义. 为了研究湍流合成射流涡环的结构演化和瞬态卷吸特性, 采用时间解析层析粒子图像测速技术, 测量了相同参数下, 圆形和长宽比为3的矩形合成射流的三维流场. 利用拉格朗日拟序结构方法, 刻画了涡环的三维拓扑变形和质量输运过程, 并量化了连续涡环的卷吸特性. 特别是对矩形涡环, 由于涡环的对流速度沿周向分布不均匀, 导致传统的移动参考系方法无法有效计算卷吸. 针对该问题, 采用基于有限时间李雅普诺夫指数“脊线”辨识旋涡边界的方法, 估计涡泡体积, 从而计算涡环的卷吸和动能转换效率. 结果表明, 矩形涡环能够卷吸更多的周围流质, 产生比圆形涡环更大的涡旋强度; 此外, 矩形涡环从孔口喷出的流质中获得了更多动能, 以维持涡环的轴系转换, 这些特征有利于增强射流掺混. 上述工作通过发展旋涡动力学的数学描述, 为量化流动控制中的旋涡卷吸特性提供了重要参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. He, Z. Luo, X. Deng, P. Cheng, W. Peng, Y. Zhou, S. Li, and T. Gao, Alleviation of self-support in dual synthetic jet and its self-similarity of streamwise momentum flux, Phys. Fluids 34, 097108 (2022).

    Article  Google Scholar 

  2. X. Wen, H. Tang, and F. Duan, Interaction of in-line twin synthetic jets with a separated flow, Phys. Fluids 28, 043602 (2016).

    Article  Google Scholar 

  3. Q. Xia, and S. Zhong, A PLIF and PIV study of liquid mixing enhanced by a lateral synthetic jet pair, Int. J. Heat Fluid Flow 37, 64 (2012).

    Article  Google Scholar 

  4. R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, Formation criterion for synthetic jets, AIAA J. 43, 2110 (2005).

    Article  Google Scholar 

  5. J. E. Cater, and J. Soria, The evolution of round zero-net-mass-flux jets, J. Fluid Mech. 472, 167 (2002).

    Article  MATH  Google Scholar 

  6. B. L. Smith, and G. W. Swift, A comparison between synthetic jets and continuous jets, Exp. Fluids 34, 467 (2003).

    Article  Google Scholar 

  7. J. M. Shuster, and D. R. Smith, Experimental study of the formation and scaling of a round synthetic jet, Phys. Fluids 19, 045109 (2007).

    Article  MATH  Google Scholar 

  8. M. Jabbal, J. Wu, and S. Zhong, The performance of round synthetic jets in quiescent flow, Aeronaut. J. 110, 385 (2006).

    Article  Google Scholar 

  9. A. McGuinn, R. Farrelly, T. Persoons, and D. B. Murray, Flow regime characterisation of an impinging axisymmetric synthetic jet, Exp. Thermal Fluid Sci. 47, 241 (2013).

    Article  Google Scholar 

  10. E. J. Gutmark, and F. F. Grinstein, Flow control with noncircular jets, Annu. Rev. Fluid Mech. 31, 239 (1999).

    Article  Google Scholar 

  11. F. F. Grinstein, Vortex dynamics and entrainment in rectangular free jets, J. Fluid Mech. 437, 69 (2001).

    Article  MATH  Google Scholar 

  12. K. B. M. Q. Zaman, Axis switching and spreading of an asymmetric jet: The role of coherent structure dynamics, J. Fluid Mech. 316, 1 (1996).

    Article  Google Scholar 

  13. A. Ghasemi, B. A. Tuna, and X. Li, Curvature-induced deformations of the vortex rings generated at the exit of a rectangular duct, J. Fluid Mech. 864, 141 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. C. Straccia, and J. A. N. Farnsworth, Axis switching in low to moderate aspect ratio rectangular orifice synthetic jets, Phys. Rev. Fluids 6, 054702 (2021).

    Article  Google Scholar 

  15. F. F. Grinstein, and C. R. DeVore, Dynamics of coherent structures and transition to turbulence in free square jets, Phys. Fluids 8, 1237 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Ghasemi, V. Roussinova, R. M. Barron, and R. Balachandar, Large eddy simulation of the near-field vortex dynamics in starting square jet transitioning into steady state, Phys. Fluids 28, 085104 (2016).

    Article  Google Scholar 

  17. M. Amitay, and F. Cannelle, Evolution of finite span synthetic jets, Phys. Fluids 18, 054101 (2006).

    Article  Google Scholar 

  18. T. Van Buren, E. Whalen, and M. Amitay, Vortex formation of a finite-span synthetic jet: Effect of rectangular orifice geometry, J. Fluid Mech. 745, 180 (2014).

    Article  Google Scholar 

  19. L. Wang, L. H. Feng, J. J. Wang, and T. Li, Evolution of low-aspect-ratio rectangular synthetic jets in a quiescent environment, Exp Fluids 59, 91 (2018).

    Article  Google Scholar 

  20. L. Wang, L. H. Feng, and Y. Xu, Laminar-to-transitional evolution of three-dimensional vortical structures in a low-aspect-ratio rectangular synthetic jet, Exp. Thermal Fluid Sci. 104, 129 (2019).

    Article  Google Scholar 

  21. A. Hashiehbaf, and G. P. Romano, A phase averaged PIV study of circular and non-circular synthetic turbulent jets issuing from sharp edge orifices, Int. J. Heat Fluid Flow 82, 108536 (2020).

    Article  Google Scholar 

  22. J. O. Dabiri, and M. Gharib, Fluid entrainment by isolated vortex rings, J. Fluid Mech. 511, 311 (2004).

    Article  MATH  Google Scholar 

  23. R. Sau, and K. Mahesh, Passive scalar mixing in vortex rings, J. Fluid Mech. 582, 449 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Qu, J. Wang, L. Feng, and X. He, Effect of excitation frequency on flow characteristics around a square cylinder with a synthetic jet positioned at front surface, J. Fluid Mech. 880, 764 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Wang, and L. H. Feng, Dynamics of the interaction of synthetic jet vortex rings with a stratified interface, J. Fluid Mech. 943, A1 (2022).

    Article  MATH  Google Scholar 

  26. X. Wen, H. Tang, and F. Duan, Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer, Phys. Fluids 27, 083601 (2015).

    Article  Google Scholar 

  27. L. Lu, D. Li, Z. Gao, Z. Cao, Y. Bai, and J. Zheng, Characteristics of array of distributed synthetic jets and effect on turbulent boundary layer, Acta Mech. Sin. 36, 1171 (2020).

    Article  MathSciNet  Google Scholar 

  28. Q. Liu, Z. Luo, X. Deng, Y. Zhou, L. Wang, and P. Cheng, Vortical structures and density fluctuations analysis of supersonic forward-facing step controlled by self-sustaining dual synthetic jets, Acta Mech. Sin. 36, 1215 (2020).

    Article  Google Scholar 

  29. B. L. Smith, and A. Glezer, The formation and evolution of synthetic jets, Phys. Fluids 10, 2281 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Wieneke, Volume self-calibration for 3D particle image velocimetry, Exp. Fluids 45, 549 (2008).

    Article  Google Scholar 

  31. G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, Tomographic particle image velocimetry, Exp. Fluids 41, 933 (2006).

    Article  Google Scholar 

  32. F. Scarano, and M. L. Riethmuller, Advances in iterative multigrid PIV image processing, Exp. Fluids 29, S051 (2000).

    Article  Google Scholar 

  33. C. Y. Wang, Q. Gao, H. P. Wang, R. J. Wei, T. Li, and J. J. Wang, Divergence-free smoothing for volumetric PIV data, Exp. Fluids 57, 15 (2016).

    Article  Google Scholar 

  34. A. Sciacchitano, and B. Wieneke, PIV uncertainty propagation, Meas. Sci. Technol. 27, 084006 (2016).

    Article  Google Scholar 

  35. H. Y. Zhu, C. Y. Wang, H. P. Wang, and J. J. Wang, Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder, J. Fluid Mech. 831, 743 (2017).

    Article  Google Scholar 

  36. M. Dawoodian, and A. Sau, Kinetics and prey capture by a paddling jellyfish: Three-dimensional simulation and Lagrangian coherent structure analysis, J. Fluid Mech. 912, A41 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Zhang, Q. Wu, B. Huang, and G. Wang, Lagrangian-based numerical investigation of aerodynamic performance of an oscillating foil, Acta Mech. Sin. 34, 839 (2018).

    Article  Google Scholar 

  38. H. Lin, Y. Xiang, H. Xu, H. Liu, and B. Zhang, Passive scalar mixing induced by the formation of compressible vortex rings, Acta Mech. Sin. 36, 1258 (2020).

    Article  Google Scholar 

  39. J. S. Wang, and J. J. Wang, Vortex dynamics for flow around the slat cove at low Reynolds numbers, J. Fluid Mech. 919, A27 (2021).

    Article  MATH  Google Scholar 

  40. R. Kumar, J. T. King, and M. A. Green, Three-dimensional pitching panel wake: Lagrangian analysis and momentum distribution from experiments, AIAA J. 57, 3701 (2019).

    Article  Google Scholar 

  41. B. Steinfurth, and J. Weiss, Vortex rings produced by non-parallel planar starting jets, J. Fluid Mech. 903, A16 (2020).

    Article  MATH  Google Scholar 

  42. T. Maxworthy, The structure and stability of vortex rings, J. Fluid Mech. 51, 15 (1972).

    Article  Google Scholar 

  43. J. S. Wang, and J. J. Wang, Wake-induced transition in the low-Reynolds-number flow over a multi-element airfoil, J. Fluid Mech. 915, A28 (2021).

    Article  Google Scholar 

  44. Q. Wu, B. Huang, and G. Wang, Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil, Acta Mech. Sin. 32, 64 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12102029, 11902019 and 11721202), and the Postdoctoral Science Foundation Grant of China (Grant No. 2021M690301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihao Feng  (冯立好).

Additional information

Author contributions

Lei Wang designed the research and developed the methodology. Lei Wang and Yang Xu wrote the first draft of the manuscript. Lei Wang and Yang Xu set up the experiment set-up and processed the experiment data. Lihao Feng helped organize the manuscript. Lei Wang and Lihao Feng revised and edited the final version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Feng, L. & Xu, Y. Lagrangian analysis on structure evolution and mass transport of circular and noncircular turbulent synthetic jets. Acta Mech. Sin. 39, 322294 (2023). https://doi.org/10.1007/s10409-022-22294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22294-x

Navigation