Skip to main content
Log in

Assessment of alternative scale-providing variables in a Reynolds-stress model using high-order methods

利用高阶方法在雷诺应力模型中评估替代尺度提供变量

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper is set in the high-order finite-difference discretization of the Reynolds-averaged Navier-Stokes (RANS) equations, which are coupled with the turbulence model equations. Three alternative scale-providing variables for the specific dissipation rate (ω) are implemented in the framework of the Reynolds stress model (RSM) for improving its robustness. Specifically, \(g\left( { = 1/\sqrt \omega } \right)\) has natural boundary conditions and reduced spatial gradients, and a new numerical constraint is imposed on it; \(\tilde \omega \left( { = \ln \omega } \right)\) can preserve positivity and also has reduced spatial gradients; the eddy viscosity νt also has natural boundary conditions and its equation is improved in this work. The solution polynomials of the mean-flow and turbulence-model equations are both reconstructed by the weighted compact nonlinear scheme (WCNS). Moreover, several numerical techniques are introduced to improve the numerical stability of the equation system. A range of canonical as well as industrial turbulent flows are simulated to assess the accuracy and robustness of the scale-transformed models. Numerical results show that the scale-transformed models have significantly improved robustness compared to the ω model and still keep the characteristics of RSM. Therefore, the high-order discretization of the RANS and RSM equations, which number 12 in total, can be successfully achieved.

摘要

本文的背景是对耦合湍流模型方程的雷诺平均Navier-Stokes (RANS)方程进行高阶有限差分离散. 为提高鲁棒性, 在雷诺应力模型(RSM)的框架中实现了三个比耗散率(ω)的替代尺度提供变量. 具体来说, \(g\left( { = 1/\sqrt \omega } \right)\) 具有自然边界条件和较小的空间梯度, 并对其施加了新的数值约束; \(\tilde \omega \left( { = \ln \omega } \right)\) 具有保正性, 同时也减少了空间梯度; 涡黏性νt 也有自然边界条件, 并本文中对其方程进行了改进. 平均流动方程和湍流模型方程的解多项式均由加权紧致非线性格式(WCNS)重构. 此外, 还引入了几种数值技术来提高方程组的数值稳定性. 对一系列规范和工业湍流开展模拟以评估尺度转换后模型的准确性和鲁棒性. 数值结果表明, 尺度转换后的模型与ω模型相比具有显着提高的鲁棒性, 并且仍然保持RSM的特征. 因此得以成功实现总数12个方程的RANS和RSM的高阶离散.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann, K. Hillewaert, H. T. Huynh, N. Kroll, G. May, P. O. Persson, B. van Leer, and M. Visbal, High-order CFD methods: current status and perspective, Int. J. Numer. Meth. Fluids 72, 811 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Eisfeld, C. Rumsey, and V. Togiti, Verification and validation of a second-moment-closure model, AIAA J. 54, 1524 (2016).

    Article  Google Scholar 

  3. F. Bassi, A. Crivellini, A. Ghidoni, and S. Rebay, in High-order discontinuous Galerkin discretization of transonic turbulent flows: Proceedings of 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, (American Institute of Aeronautics and Astronautics, 2009).

    Book  Google Scholar 

  4. F. Bassi, A. Crivellini, S. Rebay, and M. Savini, Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations, Comput. Fluids 34, 507 (2005).

    Article  MATH  Google Scholar 

  5. M. Tiberga, A. Hennink, J. L. Kloosterman, and D. Lathouwers, A high-order discontinuous Galerkin solver for the incompressible RANS equations coupled to the k-ϵ turbulence model, Comput. Fluids 212, 104710 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Schoenawa, and R. Hartmann, Discontinuous Galerkin discretization of the Reynolds-averaged Navier-Stokes equations with the shear-stress transport model, J. Comput. Phys. 262, 194 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Burgess and D. Mavriplis, in Robust computation of turbulent flows using a discontinuous Galerkin method: Proceedings of 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, (American Institute of Aeronautics and Astronautics, 2012).

    Book  Google Scholar 

  8. Z. Jiang, C. Yan, J. Yu, F. Qu, and W. Yuan, A Spalart-allmaras turbulence model implementation for high-order discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes equations, Flow Turbul. Combust. 96, 623 (2016).

    Article  Google Scholar 

  9. M. A. Ceze, and K. J. Fidkowski, High-order output-based adaptive simulations of turbulent flow in two dimensions, AIAA J. 54, 2611 (2016).

    Article  Google Scholar 

  10. Y. Mor-Yossef, Unconditionally stable time marching scheme for Reynolds stress models, J. Comput. Phys. 276, 635 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Wilcox, Turbulence Modeling for CFD (DCW Industries, La Canada, 2006).

    Google Scholar 

  12. W. Chen, and F. Song, Reynolds-stress modelling of turbulent rotating flows, Acta Mech. Sin. 13, 323 (1997).

    Article  Google Scholar 

  13. V. Togiti, B. Eisfeld, and O. Brodersen, Turbulence model study for the flow around the NASA common research model, J. Aircraft 51, 1331 (2014).

    Article  Google Scholar 

  14. R. D. Cécora, R. Radespiel, B. Eisfeld, and A. Probst, Differential reynolds-stress modeling for aeronautics, AIAA J. 53, 739 (2015).

    Article  Google Scholar 

  15. Y. G. Lai, Computational method of second-moment turbulence closures in complex geometries, AIAA J. 33, 1426 (1995).

    Article  MATH  Google Scholar 

  16. U. Schumann, Realizability of Reynolds-stress turbulence models, Phys. Fluids 20, 721 (1977).

    Article  MATH  Google Scholar 

  17. N. Ben Nasr, G. A. Gerolymos, and I. Vallet, Low-diffusion approximate Riemann solvers for Reynolds-stress transport, J. Comput. Phys. 268, 186 (2014), arXiv: 1307.2154.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Mor-Yossef, Robust turbulent flow simulations using a Reynolds-stress-transport model on unstructured grids, Comput. Fluids 129, 111 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Wang, Y. Dong, X. Deng, G. Wang, and J. Wang, High-order simulation of aeronautical separated flows with a Reynold stress model, J. Aircraft 55, 1177 (2018).

    Article  Google Scholar 

  20. S. Wang, X. Deng, G. Wang, and X. Yang, Blending the eddy-viscosity and reynolds-stress models using uniform high-order discretization, AIAA J. 58, 5361 (2020).

    Article  Google Scholar 

  21. J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis, CFD vision 2030 study: A path to revolutionary computational aerosciences, (NASA Langley Research Center, Hampton, Virginia, 2014).

    Google Scholar 

  22. S. Lakshmipathy and V. Togiti, in Assessment of alternative formulations for the specific-dissipation rate in RANS and variableresolution turbulence models: Proceedings of 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, (American Institute of Aeronautics and Astronautics, 2011).

    Google Scholar 

  23. C. G. Speziale, R. Abid, and E. C. Anderson, Critical evaluation of two-equation models for near-wall turbulence, AIAA J. 30, 324 (1992).

    Article  MATH  Google Scholar 

  24. V. K. Togiti and B. Eisfeld, in Assessment of g-equation formulation for a second-moment Reynolds stress turbulence model: Proceedings of 22nd AIAA Computational Fluid Dynamics Conference, Dallas, Texas, (American Institute of Aeronautics and Astronautics, 2015).

    Book  Google Scholar 

  25. J. C. Kok and S. P. Spekreijse, Efficient and accurate implementation of the k-ω turbulence model in the NLR multi-block Navier-Stokes system, (National Aerospace Laboratory, The Netherlands, NLR-TP-2000-144, 2000).

    Google Scholar 

  26. G. Kalitzin, A. Gould, and J. Benton, in Application of two-equation turbulence models in aircraft design: Proceedings of 34th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, (American Institute of Aeronautics and Astronautics, 1996).

    Google Scholar 

  27. R. J. A. Howard, M. Alam, and N. D. Sandham, Flow Turbul. Combust. 63, 175 (2000).

    Google Scholar 

  28. Z. Xiao, H. Chen, S. Fu, and F. Li, Computations with k-g model for complex configurations at high-incidence, J. Aircraft 42, 462 (2005).

    Article  Google Scholar 

  29. B. Shu, Y. Du, Z. Gao, L. Xia, and S. Chen, Numerical simulation of Reynolds stress model of typical aeronautic separated flow (in Chinese), Acta Aeronaut. Astronaut. Sin. 43, 126385 (2022).

    Google Scholar 

  30. F. Ilinca, and D. Pelletier, Positivity preservation and adaptive solution of two-equation models of turbulence, Int. J. Thermal Sci. 38, 560 (1999).

    Article  Google Scholar 

  31. B. Eisfeld, V. Togiti, S. Braun, and A. W. Stuermer, in Reynolds-stress model computations of the NASA juncture flow experiment: Proceedings of AIAA Scitech 2020 Forum, Orlando, Florida, (American Institute of Aeronautics and Astronautics, 2020).

    Book  Google Scholar 

  32. S. Langer, and R. C. Swanson, On boundary-value problems for RANS equations and two-equation turbulence models, J. Sci. Comput. 85, 20 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  33. F. R. Menter, and Y. Egorov, The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description, Flow Turbul. Combust. 85, 113 (2010).

    Article  MATH  Google Scholar 

  34. Y. Egorov, F. R. Menter, R. Lechner, and D. Cokljat, The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: Application to complex flows, Flow Turbul. Combust. 85, 139 (2010).

    Article  MATH  Google Scholar 

  35. J. C. Rotta, Über eine Methode zur Berechnung turbulenter Scher-strömungsfelder, Z. angew. Math. Mech. 50, 204 (1970).

    Article  Google Scholar 

  36. K. S. Abdol-Hamid, Assessments of k-kL turbulence model based on Menter’s modification to Rotta’s two-equation model, Int. J. Aerospace Eng. 2015, 1 (2015).

    Article  Google Scholar 

  37. K. S. Abdol-Hamid, in Development of kL-based linear, nonlinear, and full Reynolds stress turbulence models: Proceedings of AIAA Scitech 2019 Forum, San Diego, California, (American Institute of Aeronautics and Astronautics, 2019).

    Book  Google Scholar 

  38. B. Eisfeld and O. Brodersen, in Advanced turbulence modelling and stress analysis for the DLR-F6 configuration: Proceedings of 23rd AIAA Applied Aerodynamics Conference, Toronto, Ontario, (American Institute of Aeronautics and Astronautics, 2005).

    Book  Google Scholar 

  39. Turbulence Modeling Resource, 2021, https://turbmodels.larc.nasa.gov/.

  40. C. G. Speziale, S. Sarkar, and T. B. Gatski, Modelling the pressure-strain correlation of turbulence: An invariant dynamical systems approach, J. Fluid Mech. 227, 245 (1991).

    Article  MATH  Google Scholar 

  41. B. E. Launder, G. J. Reece, and W. Rodi, Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mech. 68, 537 (1975).

    Article  MATH  Google Scholar 

  42. F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32, 1598 (1994).

    Article  Google Scholar 

  43. X. Deng, and H. Zhang, Developing high-order weighted compact nonlinear schemes, J. Comput. Phys. 165, 22 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  44. B. van Leer, Towards the ultimate conservative difference scheme, J. Comput. Phys. 135, 229 (1997).

    Article  MATH  Google Scholar 

  45. S. Yoon, and A. Jameson, Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations, AIAA J. 26, 1025 (1988).

    Article  Google Scholar 

  46. X. Deng, M. Mao, G. Tu, H. Liu, and H. Zhang, Geometric conservation law and applications to high-order finite difference schemes with stationary grids, J. Comput. Phys. 230, 1100 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  47. X. Deng, Y. Min, M. Mao, H. Liu, G. Tu, and H. Zhang, Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids, J. Comput. Phys. 239, 90 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Zheng, X. Deng, D. Wang, and C. Xie, A parameter-free ε-adaptive algorithm for improving weighted compact nonlinear schemes, Int. J. Numer. Meth. Fluids 90, 247 (2019).

    Article  MathSciNet  Google Scholar 

  49. X. Fu, X. Deng, S. Wang, S. Zheng, and G. Wang, High-order discretization of the Reynolds stress model with an εβ-adaptive algorithm, Acta Mech. Sin. 38, 321357, (2022).

    Article  Google Scholar 

  50. AIAA CFD Drag Prediction Workshop, 2021, https://aiaa-dpw.larc.nasa.gov/Workshop5/workshop5.html.

  51. A. Uzun, and M. R. Malik, Large-Eddy simulation of flow over a wall-mounted hump with separation and reattachment, AIAA J. 56, 715 (2018).

    Article  Google Scholar 

  52. D. O. Davis, and F. B. Gessner, Further experiments on supersonic turbulent flow development in a square duct, AIAA J. 27, 1023 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12002379), the Natural Science Foundation of Hunan Province in China (Grant No. 2020JJ5648), the Scientific Research Project of National University of Defense Technology (Grant No. ZK20-43), and the National Key Project (Grant No. GJXM92579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengye Wang  (王圣业).

Additional information

Author contributions

Shengye Wang and Xiang Fu designed the research. Xiang Fu wrote the first draft of the manuscript. Xiang Fu set up the experiment set-up and processed the experiment data. Shengye Wang helped organize the manuscript. Shengye Wang and Xiaogang Deng revised and edited the final version. Shengye Wang and Xiaogang Deng acquired of the financial support for the project leading to this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Wang, S. & Deng, X. Assessment of alternative scale-providing variables in a Reynolds-stress model using high-order methods. Acta Mech. Sin. 38, 322151 (2022). https://doi.org/10.1007/s10409-022-22151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22151-x

Navigation