Skip to main content
Log in

Effect of Gurney flap on flow separation and aerodynamic performance of an airfoil under rain and icing conditions

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In the present study, special attention is paid to numerically investigate the aerodynamic performance of the NACA 0012 airfoil under rain and icing conditions with the aim to better understand the severe aerodynamic performance penalties of aircraft in flight. Furthermore, in order to control the flow separation and improve the aerodynamic performance of the airfoil under critical atmospheric conditions, the Gurney flap with different heights is attached to the trailing edge of the airfoil. The simulation is done at a Reynolds number of 3.1 × 105 under different atmospheric conditions including dry, rain, icing and coupling of rain and icing conditions. A two-way momentum coupled Eulerian–Lagrangian multiphase method is used to simulate the process of water film layer formed on the airfoil surface due to rainfall. According to the results, accumulation of water due to rainfall and ice accretion on the airfoil surface inevitably provides notable negative effects on the aerodynamic performance of the airfoil. It is concluded that icing induces a higher aerodynamic degradation than rain due to very intensive ice accretion. The Gurney flap as a passive flow control method with a favorable height for each condition is very beneficial. The maximum increment of the lift-to-drag ratio is achieved by Gurney flap with a height of 0.01 of airfoil chord length for dry and rain conditions and 0.02 of airfoil chord length for icing and coupling of rain and icing conditions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

μ :

Air dynamic viscosity

u :

Air velocity vector

c :

Airfoil chord length

θ :

Angle between airfoil chord length and Gurney flap

α :

Angle of attack

ρ w :

Density of water

D p :

Diameter of the rain particle

Y + :

Dimensionless wall distance

C D :

Drag coefficient

β :

Drag force

μ T :

Eddy viscosity

ρ :

Fluid phase density

\( U_{\infty } \) :

Free stream velocity

g i :

Gravitational acceleration

H :

Gurney flap height

\( E_{im} \) :

Impact energy

L i :

Injection line

LEV :

Leading edge vortex

C L :

Lift coefficient

\( LWC \) :

Liquid water content

\( M_{ex} \) :

Momentum exchange

\( C_{D,P} \) :

Particle drag coefficient

\( Re_{p} \) :

Particle Reynolds number

ρ D :

Particles density

u p :

Particles velocity vector

P :

Pressure

\( R \) :

Rainfall rate

ε :

Rate of dissipation

Re :

Reynolds number

U T :

Terminal velocity

\( \delta_{bl} \) :

Thickness of the boundary layer

t :

Time

TEV :

Trailing edge vortex

k :

Turbulent kinetic energy

References

  1. Pouryoussefi, S.G., Mirzaei, M., Nazemi, M.M., et al.: Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil. Chin. J. Aeronaut. 29, 585–595 (2016)

    Google Scholar 

  2. Pouryoussefi, S.G., Mirzaei Alinejad, M., et al.: Experimental investigation of separation bubble control on an iced airfoil using plasma actuator. Appl. Therm. Eng. 100, 1334–1341 (2016)

    Google Scholar 

  3. Gurbacki, H., Bragg, M.: Unsteady flow field about an iced airfoil. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Jan p. 562 (2004)

  4. Gurbacki, H., Bragg, M.: Unsteady aerodynamic measurements on an iced airfoil. In: 40th AIAA Aerospace Sciences Meeting & Exhibit, p. 241 (2002)

  5. Mirzaei, M., Ardekani, A.M., Doosttalab, M.: Numerical and experimental study of flow field characteristics of an iced airfoil. Aerosp. Sci. Technol. 13, 267–276 (2009)

    Google Scholar 

  6. Ebrahimi, A., Hajipour, M., Hasheminasab, H.: Experimental investigation on the aerodynamic performance of NLF-0414 iced-airfoil. J. Appl. Fluid Mech. 9, 587–592 (2016)

    Google Scholar 

  7. Xiao, M., Zhang, Y., Zhou, F.: Numerical study of Iced airfoils with horn features using large-Eddy simulation. J. Aircr. 56, 94–107 (2018)

    Google Scholar 

  8. Ismail, M., Yihua, C., Bakar, A., et al.: Aerodynamic efficiency study of 2D airfoils and 3D rectangular wing in heavy rain via two-phase flow approach. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 228, 1141–1155 (2014)

    Google Scholar 

  9. Rhode, R. V.: Some effects of rainfall on flight of airplanes and on instrument indication. No. NACA-TN-803. National Aeronautics and Space Admin Langley Research Center Hampton VA, (1941)

  10. Wu, Z.: Drop “impact” on an airfoil surface. Adv. Colloid Interface Sci. 256, 23–47 (2018)

    Google Scholar 

  11. Wu, Z., Lv, B., Cao, Y.: Heavy rain effects on aircraft lateral/directional stability and control determined from numerical simulation data. Aerosp. Sci. Technol. 80, 472–481 (2018)

    Google Scholar 

  12. Haines, P., Luers, J.: Aerodynamic penalties of heavy rain on landing airplanes. J. Aircr. 20, 111–119 (1983)

    Google Scholar 

  13. Wu, Z., Cao, Y.: Numerical simulation of flow over an airfoil in heavy rain via a two-way coupled Eulerian–Lagrangian approach. Int. J. Multiph. Flow 69, 81–92 (2015)

    MathSciNet  Google Scholar 

  14. DeMauro, E.P., Dell’Orso, H., Zaremski, S., et al.: Control of laminar separation bubble on NACA 0009 airfoil using electroactive polymers. AIAA J. 53, 2270–2279 (2015)

    Google Scholar 

  15. Fatahian, H., Salarian, H., Nimvari, M.E., et al.: Numerical study of suction and blowing approaches to control flow over a compressor cascade in turbulent flow regime. Int. J. Automot. Mech. Eng. 15, 5326–5346 (2018)

    Google Scholar 

  16. Fatahian, E., Nichkoohi, A.L., Fatahian, H.: Numerical study of the effect of suction at a compressible and high Reynolds number flow to control the flow separation over Naca 2415 airfoil. Prog. Comput. Fluid Dyn. Int. 19, 170–179 (2019)

    Google Scholar 

  17. Wild, J.: Mach-, Reynolds-and Sweep effects on active flow separation control effectivity on a 2-element airfoil wing. Active flow and combustion control. Springer. Cham, 87–100 (2015)

  18. Farhadi, A., Rad, E.G., Emdad, H.: Aerodynamic multi-parameter optimization of NACA 0012 airfoil using suction/blowing jet technique. Arab. J. Sci. Eng. 42, 1727–1735 (2017)

    Google Scholar 

  19. Cattafesta III, L.N., Sheplak, M.: Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247–272 (2011)

    MATH  Google Scholar 

  20. Tadjfar, M., Asgari, E.: Active flow control of dynamic stall by means of continuous jet flow at reynolds number of 1 × 106. J. Fluid Eng. 140, 011107 (2018)

    Google Scholar 

  21. Ma, D., Li, G., Yang, M., et al.: Research of the suction flow control on wings at low Reynolds numbers. Proc. Inst. Mech. Eng. G J Aerosp. 232, 1515–1528 (2018)

    Google Scholar 

  22. Mohammadi, M., Taleghani, A.S.: Active flow control by dielectric barrier discharge to increase stall angle of a NACA 0012 airfoil. Arab. J. Sci. Eng. 39, 2363–2370 (2014)

    Google Scholar 

  23. Fatahian, E., Nichkoohi, A.L., Salarian, H., et al.: Comparative study of flow separation control using suction and blowing over an airfoil with/without flap. Sadhana 44, 220–239 (2019)

    MathSciNet  Google Scholar 

  24. Tung, C., McAlister, K.W., Wang, C.M.: Unsteady aerodynamic behavior of an airfoil with and without a slat. Comput. Fluids 22, 529–547 (1993)

    Google Scholar 

  25. Fatahian, E., Nichkoohi, A.L., Salarian, H., et al.: Effects of the hinge position and suction on flow separation and aerodynamic performance of the NACA 0012 airfoil. J. Braz. Soc. Mech. Sci. 42, 1–14 (2020)

    Google Scholar 

  26. Cole, J.A., Vieira, B.A., Coder, J.G., et al.: Experimental investigation into the effect of Gurney flaps on various airfoils. J. Aircr. 50, 1287–1294 (2013)

    Google Scholar 

  27. Traub, L.W., Chandrashekar, S.M.: Experimental study on the effects of wing sweep on Gurney flap performance. Aerosp. Sci. Technol. 55, 57–63 (2016)

    Google Scholar 

  28. Yousefi, K., Saleh, R., Zahedi, P.: Numerical study of blowing and suction slot geometry optimization on NACA 0012 airfoil. J. Mech. Sci. Technol. 28, 1297–1310 (2014)

    Google Scholar 

  29. Yousefi, K., Saleh, R.: Three-dimensional suction flow control and suction jet length optimization of NACA 0012 wing. Meccanica 50, 1481–1494 (2015)

    MathSciNet  MATH  Google Scholar 

  30. You, D., Moin, P.: Active control of flow separation over an airfoil using synthetic jets. J. Fluids Struct. 24, 1349–1357 (2008)

    Google Scholar 

  31. Motta, V., Quaranta, G.: Linear reduced-order model for unsteady aerodynamics of an L-shaped Gurney flap. J. Aircr. 52, 1887–1904 (2015)

    Google Scholar 

  32. Vieira, B.A., Maughmer, M.D.: Unsteady aerodynamic model for deployable Gurney flaps based on indicial concepts. J. Aircr. 54, 1375–1387 (2016)

    Google Scholar 

  33. Amini, Y., Liravi, M., Izadpanah, E.: The effects of Gurney flap on the aerodynamic performance of NACA 0012 airfoil in the rarefied gas flow. Comput. Fluids 170, 93–105 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Amini, Y., Emdad, H., Farid, M.: Adjoint shape optimization of airfoils with attached Gurney flap. Aerosp. Sci. Technol. 41, 216–228 (2015)

    Google Scholar 

  35. Apte, S.V., Gorokhovski, M., Moin, P.: LES of atomizing spray with stochastic modeling of secondary breakup. Int. J. Multiph. Flow. 29, 1503–1522 (2003)

    MATH  Google Scholar 

  36. Bezos, G. M., Dunham, R. E., Gentry, G.L., et al.: Wind tunnel aerodynamic characteristics of a transport-type airfoil in a simulated heavy rain environment. Technical. Report. TP-3184, NASA, (1992)

  37. Markowitz, A.H.: Raindrop size distribution expressions. J. Appl. Meteorol. 15, 1029–1031 (1976)

    Google Scholar 

  38. Wu, Z., Cao, Y., Nie, S., Yang, Y., et al.: Effects of rain on vertical axis wind turbine performance. J. Wind Eng. Ind. Aerodyn. 170, 128–140 (2017)

    Google Scholar 

  39. Yousefi, K., Razeghi, A.: Determination of the critical Reynolds number for flow over symmetric NACA airfoils. In: 2018 AIAA Aerospace Sciences Meeting, p. 0818 (2018)

  40. McMasters, J.H., Henderson, M.L.: Low-speed single-element airfoil synthesis. NASA Conf. Publ. 2085, 1–31 (1979)

    Google Scholar 

  41. Ismail, M., Wu, Z., Bakar, A., et al.: Aerodynamic characteristics of airfoil cruise landing and high lift configurations in simulated rain environment. J. Aerosp. Eng. 28, 04014131 (2014)

    Google Scholar 

  42. Wu, Z., Cao, Y., Ismail, M.: Heavy rain effects on aircraft longitudinal stability and control determined from numerical simulation data. Proc. Inst. Mech. Eng. G J Aerosp. 229, 1824–1842 (2015)

    Google Scholar 

  43. Raj, L.P., Lee, J.W., Myong, R.S.: Ice accretion and aerodynamic effects on a multi-element airfoil under SLD icing conditions. Aerosp. Sci. Technol. 85, 320–333 (2019)

    Google Scholar 

  44. Versteeg, H.K., Malalasekera, W.: An introduction to computational fluid dynamics: the finite method. Pearson Education, London (2007)

    Google Scholar 

  45. Han, Z., Xu, Z., Trigui, N.: Spray/wall interaction models for multidimensional engine simulation. Int. J. Engine Res. 1, 127–146 (2000)

    Google Scholar 

  46. Bilanin, A.J.: Scaling laws for testing airfoils under heavy rainfall. J. Airc. 24, 31–37 (1987)

    Google Scholar 

  47. Morsi, S.A., Alexander, A.J.: An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972)

    MATH  Google Scholar 

  48. Cai, M., Abbasi, E., Arastoopour, H.: Analysis of the performance of a wind-turbine airfoil under heavy-rain conditions using a multiphase computational fluid dynamics approach. Ind. Eng. Chem. Res. 52, 3266–3275 (2012)

    Google Scholar 

  49. Hansman, R.J., Craig, A.P.: Low Reynolds number tests of NACA 64-210, NACA 0012, and Wortmann FX67-K170 airfoils in rain. J. Airc. 24, 559–566 (1987)

    Google Scholar 

  50. Li, Y., Wang, J., Zhang, P.: Effects of Gurney flaps on a NACA 0012 airfoil. Flow Turbul. Combust. 68, 27–35 (2002)

    MATH  Google Scholar 

  51. Feng, L.H., Choi, K.S., Wang, J.J.: Flow control over an airfoil using virtual Gurney flaps. J. Fluid Mech. 767, 595–626 (2015)

    Google Scholar 

  52. Feng, L.H., Jukes, T.N., Choi, K.S., Wang, J.J.: Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap. Exp. Fluids 52, 1533–1546 (2012)

    Google Scholar 

  53. Yu, T., Wang, J.J., Zhang, P.F.: Numerical simulation of Gurney flap on RAE-2822 supercritical airfoil. J. Aircr. 48, 1565–1575 (2011)

    Google Scholar 

  54. Harrison, E.L., Veron, F.: Near-surface turbulence and buoyancy induced by heavy rainfall. J. Fluid Mech. 830, 602–630 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesamoddin Salarian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatahian, H., Salarian, H., Eshagh Nimvari, M. et al. Effect of Gurney flap on flow separation and aerodynamic performance of an airfoil under rain and icing conditions. Acta Mech. Sin. 36, 659–677 (2020). https://doi.org/10.1007/s10409-020-00938-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00938-3

Keywords

Navigation