Skip to main content
Log in

Variable-stiffness composite cylinder design under combined loadings by using the improved Kriging model

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The large design freedom of variable-stiffness (VS) composite material presupposes its potential for wide engineering application. Previous research indicates that the design of VS cylindrical structures helps to increase the buckling load as compared to quasi-isotropic (QI) cylindrical structures. This paper focuses on the anti-buckling performance of VS cylindrical structures under combined loads and the efficient optimization design method. Two kinds of conditions, bending moment and internal pressure, and bending moment and torque are considered. Influences of the geometrical defects, ovality, on the cylinder’s performances are also investigated. To increase the computational efficiency, an adaptive Kriging meta-model is proposed to approximate the structural response of the cylinders. In this improved Kriging model, a mixed updating rule is used in constructing the meta-model. A genetic algorithm (GA) is implemented in the optimization design. The optimal results show that the buckling load of VS cylinders in all cases is greatly increased as compared with a QI cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Jing, Z., Fan, X.L., Sun, Q.: Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm. Compos. Struct. 121, 225–236 (2015)

    Article  Google Scholar 

  2. Jing, Z., Fan, X.L., Sun, Q.: Global shared layer blending method for stacking sequence optimization design and blending of composite structures. Compos. B Eng. 69, 181–190 (2015)

    Article  Google Scholar 

  3. Peeters, D., Abdalla, M.: Optimisation of variable stiffness composites with ply drops. In: 56th AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., Kissimmee, Florida 0450 (2015)

  4. Peeters, D., Abdalla, M.: Optimization of ply drop locations in variable-stiffness composites. AIAA J. 54, 1760–1768 (2016)

    Article  Google Scholar 

  5. Pinckney, R.L.: Fabrication of the v-22 composite aft fuselage using automated fiber placement. In: Proceedings of First NASA Advanced Composites Technology Conference. NASA Langley Research Center: 385–397 (1991)

  6. Anderson, R.L., Gran, C.: Advanced fiber placement of composite fuselage structures. In: Proceeding of First NASA Advanced Composites Technology Conferen. NASA Langley Research Center, 817–830 (1991)

  7. Kisch, R.A.: Automated fiber placement historical perspective. In: Proceedings of International SAMPE Symposium and Exhibition, Long Beach, CA (USA). 30 April–4 May, pp. 1537–1547 (2006)

  8. Brüning, J., Denkena B., Dittrich M.A., et al: Machine learning approach for optimization of automated fiber placement processes. In: 1st CIRP Conference on Composite Materials Parts Manufacturing, Procedia CIRP, 74–78 (2017)

  9. Mejlej, V.G., Falkenberg P., Türck E., et al: Optimization of variable stiffness composites in automated fiber placement process using evolutionary algorithms. In: 1st Cirp Conference on Composite Materials Parts Manufacturing, Procedia CIRP, 79–84 (2017)

  10. Schmidt, C., Weber P., Hocke T., et al: Influence of prepreg material quality on carbon fiber reinforced plastic laminates processed by automated fiber placement. In: 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering, Procedia CIRP, 422–427 (2018)

  11. Sabido, A., Bahamonde, L., Harik, R., et al.: Maturity assessment of the laminate variable stiffness design process. Compos. Struct. 160, 804–812 (2017)

    Article  Google Scholar 

  12. Bigger, S.B., Srinivasan, S.: Compression buckling response of tailored rectangular composite plates. AIAA J. 31, 590–596 (1993)

    Article  Google Scholar 

  13. Blom, A., Stickler, P., Gurdal, A.: Optimization of composite cylinder under bending by tailoring stiffness properties in circumferential direction. Compos. Part B 41, 157–165 (2010)

    Article  Google Scholar 

  14. Gurdal, Z., Tatting, B., Wu, C.: Variable stiffness composite panels: effects of stiffness variation on the in-plane and buckling response, Compos. Part A Appl. Sci. Manuf. 39, 911–922 (2008)

    Article  Google Scholar 

  15. Setoodeh, S., Abdalla, M., Ijsselmuiden, S., et al.: Design of variable-stiffness composite panel for maximum buckling load. Compos. Struct. 87, 109–117 (2009)

    Article  Google Scholar 

  16. Khani, A., Abdalla, M.M., Gürdal, Z., et al.: Design, manufacturing and testing of a fibre steered panel with a large cut-out. Compos. Struct. 180, 821–830 (2017)

    Article  Google Scholar 

  17. Hyer, M.W., Rust, R.J., Waters, W.A.: Innovative design of composite structures: design, manufacturing, and testing of plates utilizing curvilinear fiber trajectories. Technical Report NASA-CR-197045, NASA (1994)

  18. Tatting B.F.: Analysis and design of variable stiffness composite cylinders. [Ph.D. Thesis], Virg. Tech, Blacksburg, Virginia (1998)

  19. Rouhi, M., Ghayoor, H., Hoa, S.V., et al.: Multi-objective design optimization of variable stiffness composite cylinders. Compos. Part B 69, 249–255 (2015)

    Article  Google Scholar 

  20. Rouhi, M., Ghayoor, H.: Stiffness tailoring of elliptical composite cylinder for axial buckling performance. Compos. Struct. 150, 115–123 (2016)

    Article  Google Scholar 

  21. Zheng, Y.C., Chen, J.Q.: A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser. Acta Mech. Sin. 34, 275–284 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, Y.F., Chen, J.Q., Wei, J.H.: A surrogate-based particle swarm optimization algorithm for solving optimization problems with expensive black box functions. Eng. Optim. 45, 557–576 (2013)

    Article  MathSciNet  Google Scholar 

  23. Chen, J.Q., Tang, Y.F., Huang, X.X.: Application of surrogate based particle swarm optimization to the reliability-based robust design of composite pressure vessels. Acta Mech. Solida Sin. 26, 480–490 (2013)

    Article  Google Scholar 

  24. Huang, X.X., Chen, J.Q., Zhu, H.P.: Assessing smaill failure probabilities by AK-SS: an active learning method combining Kriging and subset simulation. Struct. Saf. 59, 86–95 (2016)

    Article  Google Scholar 

  25. Rouhi, M., Ghayoor, H., Hoa, S.V., et al.: Computational efficiency and accuracy of muti-step design optimization method for variable stiffness composite structures. Thin Walled Struct. 113, 136–143 (2017)

    Article  Google Scholar 

  26. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)

    Article  Google Scholar 

  27. Han, Z.H., Zimmermann, R., Goertz, S.: A new coKriging method for variable-fidelity surrogate modeling of aerodynamic data. AIAA-2010-1225, Reston (2010)

  28. Kale, A.V., Thorat, H.T.: Effect of precompression on ovality of pipe after bending. J. Press. Vessel Technol. 131, 011207 (2009)

    Article  Google Scholar 

  29. Rehman, S.U., Langelaar, M., Keulen, F.V.: Efficient Kriging-based robust optimization of unconstrained problems. J. Comput. Sci. 5, 872–881 (2014)

    Article  MathSciNet  Google Scholar 

  30. Tullu, A., Kang, B.S.: Elastic deformation of fiber-reinforced multi-layered composite cylindrical shells of variable stiffness. Compos. Struct. 154, 634–645 (2016)

    Article  Google Scholar 

  31. Rouhi, M., Ghayoor, H., Hoa, S.V., et al.: Effect of structural parameters on design of variable-stiffness cylinders made by fiber steering. Compos. Struct. 118, 472–481 (2014)

    Article  Google Scholar 

  32. Li, X., Wang, C.H.: Optimum design of composite sandwich structures subjected to combined torsion and bending loads. Appl. Compos. Mater. 19, 315–331 (2012)

    Article  Google Scholar 

  33. Lakshmi, K., Rao, A.R.M.: Multi-objective optimal design of laminated composite skirt using hybrid NSGA. Meccanica 48, 1431–1450 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant 11572134) and the China Postdoctoral Science Foundation (Grant 2017M612443).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaochen Zheng or Jianqiao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Zheng, Y., Chen, J. et al. Variable-stiffness composite cylinder design under combined loadings by using the improved Kriging model. Acta Mech. Sin. 35, 201–211 (2019). https://doi.org/10.1007/s10409-018-0791-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0791-y

Keywords

Navigation