Skip to main content
Log in

A general solution for Stokes flow and its application to the problem of a rigid plate translating in a fluid

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A general solution for 3D Stokes flow is given which is different from, and more compact than the existing ones and more compact than them in that it involves only two scalar harmonic functions. The general solution deduced is combined with the potential theory method to study the Stokes flow induced by a rigid plate of arbitrary shape translating along the direction normal to it in an unbounded fluid. The boundary integral equation governing this problem is derived. When the plate is elliptic, exact analytical results are obtained not only for the drag force but also for the velocity distributions. These results include and complete the ones available for a circular plate. Numerical examples are provided to illustrate the main results for circular and elliptic plates. In particular, the elliptic eccentricity of a plate is shown to exhibit significant influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selvadurai, A.P.S.: Partial Differential Equations in Mechanics 2. Springer-Veelag (2000)

    Book  MATH  Google Scholar 

  2. Batchelor, G.K.: Slender-body theory for particles of arbitrary cross-section in Stokes flow. Journal of Fluid Mechanics 44, 419–440 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  3. Crowdy, D. G.: Exact solutions for cylindrical “slip-stick” Janus swimmers in Stokes flow. Journal of Fluid Mechanics 719, R2 (1–9) (2013)

    Article  MathSciNet  Google Scholar 

  4. Youngren, G.K., Acrivos, A.: Stokes flow past a particle of arbitrary shape: a numerical method of solution. Journal of Fluid Mechanics 69, 377–403 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zick, A.A., Homsy, G.M.: Stokes flows through periodic arrays of spheres. Journal of Fluid Mechanic 115, 13–26 (1982)

    Article  MATH  Google Scholar 

  6. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley New York (1960)

    Google Scholar 

  7. Happel, J., Brenner H.: Low Reynolds Number Hydrodynamics. Martinus Nijhoff, Kluwer Academic Publishers, Dordrecht (1983)

    Google Scholar 

  8. Kim, S., Karrila S. J.: Microhydrodynamics: Principles and Selected Applications. Butterworth, Heinemann, Boston (1991)

    Google Scholar 

  9. Leal, L. G.: Laminar Flow and Convective Transport Processes. Scaling Principles and Asymptotic Analysis. Butterworth, Heinemann, Boston (1992)

    Google Scholar 

  10. Ho, C. M., Tai, Y. C.: Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics 32, 579–612 (1998)

    Article  Google Scholar 

  11. Stokes, G. G.: On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society 9, 8–106 (1851)

    Google Scholar 

  12. Charalambopoulos, A., Dassios G.: Complete decomposition of axisymmetric Stokes flow. International Journal of Engineering Science 40, 1099–1111 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Boussinesq, J.: Équilibre d’élasticité d’un solide sans pesanteur, homog`ene et isotrope, dont les parties profondes sont maintenues fixes, pendant que sa surface éprouve des pressions ou des déplacements connus, s’annullant hors d’une région restreinte où ils sont arbitraires. Comptes Rendus de l’Académie des Sciences Paris 106, 1043–1048 (1888) (in French)

    MATH  Google Scholar 

  14. Naghdi, P.M., Hsu, C. S.: On a representation of displacements in linear elasticity in terms of three stress functions. Journal of Mathematics and Mechanics 10, 233–245 (1961)

    MATH  MathSciNet  Google Scholar 

  15. Xu, X.S., Wang, M.Z.: General complete solutions of the equations of spatial and axisymmetric Stokes’ flow. The Quarterly Journal of Mechanics and Applied Mathematics 44, 537–548 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Amaranath, T.: General solutions of the Stokes equations and their applications. Proceedings in Applied Mathematics and Mechanics 7, 1100701–1100702 (2007)

    Article  Google Scholar 

  17. Kong, D.L., Cui, Z., Pan, Y.X., et al.: On the Papkovich-Neuber formulation for Stokes flows driven by a translating/rotating prolate spheroid at arbitrary angles. International Journal of Pure and Applied Mathematics 75, 455–483 (2012)

    MATH  Google Scholar 

  18. Padmavati, B.S., Amaranath, T.: A note on decomposition of solenoidal fields. Applied Mathematics Letters 15, 803–805 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Padmavathi, B.S., Rajasekhar, G.P., Amaranath T.: A note on complete general solutions of Stokes equations. The Quarterly Journal of Mechanics and Applied Mathematics 51, 383–388 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tran-Cong, T., Blake, J.R.: General solutions of the Stokes flow equations. Journal of Mathematical Analysis and Applications 90, 72–84 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kellogg, O.D.: Foundations of Potential Theory. F. Ungar Publishing New York (1929)

    Book  Google Scholar 

  22. Fabrikant, V.I.: Applications of Potential Theory in Mechanics: A Selection of New Results. Kluwer Academic Publishers, Dordrecht (1989)

    MATH  Google Scholar 

  23. Fabrikant, V.I.: Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  24. Chen, W.Q., Ding, H.J.: Potential theory method for 3D crack and contact problems of multi-field coupled media: A survey. Journal of Zhejiang University Science 5, 1009–1021 (2004)

    Article  Google Scholar 

  25. Chen, W.Q., Pan, E.N., Wang, H.M., et al.: Theory of indentation on multiferroic composite materials. Journal of the Mechanics and Physics of Solids 58, 1524–1551 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Li, X.Y.: Fundamental electro-elastic field in an infinite transversely isotropic piezoelectric medium with a permeable external circular crack. Smart Materials and Structures 21, 065019 (2012)

    Article  Google Scholar 

  27. Li, X.Y.: Fundamental solutions of penny-shaped and half-infinite plane cracks embedded in an infinite space of 1D hexagonal quasi-crystal under thermal loading. Proceedings of the Royal Society A 469, 20130023 (2013)

    Article  Google Scholar 

  28. Li, X.Y., Chen, W.Q., Wang, H.Y.: General steady-state solutions for transversely isotropic thermoporoelastic media in three dimensions and its application. European Journal of Mechanics A/Solids 29, 317–326 (2010)

    Article  Google Scholar 

  29. Oberbeck, A.: Ueber stationäre flüssigkeitsbewegungen mit berucksichtigung der inneren. Journal für die reine und angewandte Mathematik 81, 62–80 (1876) (in German)

    Google Scholar 

  30. Lamb, H.: Hydrodymamics (6th edition). University Press, Combridge (1932)

    Google Scholar 

  31. Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 102, 161–179 (1922)

    Article  Google Scholar 

  32. Boridy, E.: Potential flow past an open spherical cavity. Journal of Applied Physics 67, 6687–6693 (1990)

    Article  Google Scholar 

  33. Blaser, S.: Forces on the surface of small ellipsoidal particles immersed in a linear flow field. Chemical Engineering Science 57, 515–526 (2002)

    Article  Google Scholar 

  34. Srivastava, D.K., Yadav, R.R., Yadav, S.: Steady stokes flow around deformed sphere. Class of oblate axisymmetric bodies. International Journal of Applied Mathematics and Mechanics 8, 17–53 (2012)

    Google Scholar 

  35. Fabrikant, V.I.: A new symbolism for solving the Hertz contact problem. The Quarterly Journal of Mechanics and Applied Mathematics 53, 368–381 (2005)

    MathSciNet  Google Scholar 

  36. Fabrikant, V.I.: Utilization of divergent integrals and a new symbolism in contact and crack analysis. IMA Journal of Applied Mathematics 72, 180–190 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lauga, E., Powers T.R.: The hydrodynamics of swimming microorganisms. Reports on Progress in Physics 72, 096601 (2009)

    Article  MathSciNet  Google Scholar 

  38. Wang, C.Y.: Exact solutions of the steady-state Navier-Stokes equations. Annual Review of Fluid Mechanics 23, 159–177 (1991)

    Article  Google Scholar 

  39. Ding, H.J., Chen, B., Liang, J.: General solutions for coupled equations for piezoelectric media. International Journal of Solids and Structures 33, 2283–2298 (1996)

    Article  MATH  Google Scholar 

  40. Gradsbteyn, I.S., Ryzbik, L.M.: Table of Integrals, Series, and Products. 6th edition Elsevier, Amsterdam (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Yu Li or Qi-Chang He.

Additional information

The project was supported by the National Natural Science Foundation of China (11102171) and by the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-13-0973).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Ren, SC. & He, QC. A general solution for Stokes flow and its application to the problem of a rigid plate translating in a fluid. Acta Mech Sin 31, 32–44 (2015). https://doi.org/10.1007/s10409-015-0016-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0016-6

Keywords

Navigation