Skip to main content
Log in

Exact mesh shape design of large cable-network antenna reflectors with flexible ring truss supports

  • Research Paper
  • Solid Mechanics
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the generation of exact spatial parabolic mesh configurations of such reflector was proposed. By incorporating the traditional force density method with the standard finite element method, this proposed approach had taken the deformation effects of flexible ring truss supports into consideration, and searched for the desired mesh shapes that can satisfy the requirement that all the free nodes are exactly located on the objective paraboloid. Compared with the conventional design method, a remarkable improvement of surface accuracy in the obtained mesh shapes had been demonstrated by numerical examples. The present work would provide a helpful technical reference for the mesh shape design of such cable-network antenna reflector in engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greco, L., Cuomo, M.: On the force density method for slack cable nets. Int. J. Solids Struct. 49, 1526–1540 (2012)

    Article  Google Scholar 

  2. Gu, Z., Yang, L., Li, Y., et al.: Aeroelastic modeling of wind loading on a cable-net supported glass wall. Acta Mech. Sin. 26, 409–415 (2010)

    Article  Google Scholar 

  3. Tanaka, H., Natori, M.C.: Shape control of cable-network structures based on concept of self-equilibrated stresses. JSME Int. J. Ser. C 49, 1067–1072 (2006)

    Article  Google Scholar 

  4. Liu, J.F., Li, S.X., Chen Y.Q.: A fast and practical method to pack spheres for mesh generation. Acta Mech. Sin. 24, 439–447 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Andreu, A., Gil, L., Roca, P.: A new deformable catenary element for the analysis of cable net structures. Comput. Struct. 84, 1882–1890 (2006)

    Article  Google Scholar 

  6. Feng, R., Wu, Y., Shen, S.: A simplified calculating method of nonlinear frequency of cable net under mean wind load. Acta Mech. Solida Sin. 19, 248–254 (2006)

    Article  Google Scholar 

  7. Liu, J., Nan, Z., Yi, P.: Validation and application of three-dimensional discontinuous deformation analysis with tetrahedron finite element meshed block. Acta Mech. Sin. 28, 1602–1616 (2012)

    Article  MathSciNet  Google Scholar 

  8. Xu, M., Zhu, J.M., Tan, T., Xu, S.J.: Equilibrium configurations of the tethered three-body formation system and their nonlinear dynamics. Acta Mech. Sin. 28, 1668–1677 (2012)

    Article  MathSciNet  Google Scholar 

  9. Tran, H.C., Lee, J.: Geometric and material nonlinear analysis of tensegrity structures. Acta Mech. Sin. 27, 938–949 (2011)

    Article  MathSciNet  Google Scholar 

  10. Thomson, M.W.: AstroMesh™deployable reflectors for Kuand Ka-band commercial satellites. In: Proceedings of the 20th AIAA International Communication Satellite Systems Conference and Exhibit, Montreal, Quebec, Canada, AIAA 2002-2032 (2002)

    Google Scholar 

  11. Tanaka, H., Natori, M.C.: Shape control of space antennas consisting of cable networks. Acta Astronaut. 55, 519–527 (2004)

    Article  Google Scholar 

  12. Meguro, A., Harada, S., Watanabe, M.: Key technologies for high-accuracy large mesh antenna reflectors. Acta Astronaut. 53, 899–908 (2003)

    Article  Google Scholar 

  13. Tibert, A.G.: Optimal design of tension truss antennas. In: Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, AIAA 2003-1629 (2003)

    Google Scholar 

  14. Guan, F.L., Yang, Y.L., Zhao, M.L.: Mesh generation and preventing winding of large net-shape deployable antennas for satellite. J. Eng. Design 13, 271–276 (2006) (in Chinese)

    Google Scholar 

  15. Xia, M.M., Guan, F.L.: Improved PSO based pretension optimum of cable net in antenna. J. Zhejiang Univ. (Eng. Science) 47, 480–487 (2013) (in Chinese)

    Google Scholar 

  16. Morterolle, S., Maurin, B., Quirant J., et al.: Numerical form-finding of geotensoid tension truss for mesh reflector. Acta Astronaut. 76, 154–163 (2012)

    Article  Google Scholar 

  17. Shi, H., Yang, B., Thomson, M., et al.: Automatic surface mesh generation for design of space deployable mesh reflectors. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, AIAA 2012-1840 (2012)

    Google Scholar 

  18. Liu, W., Li D.X.: Simple technique for form-finding and tension determining of cable-network antenna reflectors. J. Spacecraft Rockets 50, 479–481 (2013)

    Article  Google Scholar 

  19. Liu, W., Li D.X., Jiang, J.P.: Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures. Struct. Eng. Mech. 45, 411–422 (2013)

    Article  Google Scholar 

  20. Liu, W., Li D.X., Jiang, J.P.: General mesh configuration design approach for large cable-network antenna reflectors. J. Struct. Eng. 140, 04013051 (2014)

    Article  Google Scholar 

  21. Stefanou, G.D., Nejad, S.E.M.: A general method for the analysis of cable assemblies with fixed and flexible elastic boundaries. Comput. Struct. 55, 897–905 (1995)

    Article  MATH  Google Scholar 

  22. Li, J.J., Chan, S.L.: An integrated analysis of membrane structures with flexible supporting frames. Finite Elem. Anal. Des. 40, 529–540 (2004)

    Article  Google Scholar 

  23. Talvik, I.: Finite element modelling of cable networks with flexible supports. Comput. Struct. 79, 2443–2450 (2001)

    Article  Google Scholar 

  24. Mitsugi, J.: Static analysis of cable networks and their supporting structures. Comput. Struct. 51, 47–56 (1994)

    Article  MATH  Google Scholar 

  25. Tibert, A.G., Pellegrino, S.: Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 18, 209–223 (2003)

    Article  Google Scholar 

  26. Mobrem, M.: Methods of analyzing surface accuracy of large antenna structures due to manufacturing tolerances. In: Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, AIAA 2003-1453 (2003)

    Google Scholar 

  27. Agrawal, P.K., Anderson, M.S., Card, M.F.: Preliminary design of large reflectors with flat facets. IEEE Trans. Antenn. Propagat. AP-29, 688–694 (1981)

    Article  Google Scholar 

  28. Schek, H.J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3, 115–134 (1974)

    Article  MathSciNet  Google Scholar 

  29. Tanaka, H., Shimozono, N., Natori, M.C.: A design method for cable network structures considering the flexibility of supporting structures. Trans. Japan Soc. Aero. Space Sci. 50, 267–273 (2008)

    Article  Google Scholar 

  30. Malerba, P.G., Patelli, M., Quagliaroli, M.: An extended force density method for the form finding of cable systems with new forms. Struct. Eng. Mech. 42, 191–210 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Li, DX., Yu, XZ. et al. Exact mesh shape design of large cable-network antenna reflectors with flexible ring truss supports. Acta Mech Sin 30, 198–205 (2014). https://doi.org/10.1007/s10409-014-0029-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0029-6

Keywords

Navigation