Skip to main content
Log in

Multiscale mechanobiology modeling for surgery assessment

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper discusses some of the concept of modeling surgery outcome. It is also an attempt to offer a road map for progress. This paper may serve as a common ground of discussion for both communities i.e surgeons and computational scientist in its broadest sense. Predicting surgery outcome is a very difficult task. All patients are different, and multiple factors such as genetic, or environment conditions plays a role. The difficulty is to construct models that are complex enough to address some of these significant multiscale elements and simple enough to be used in clinical conditions and calibrated on patient data. We will provide a multilevel progressive approach inspired by two applications in surgery that we have been working on. One is about vein graft adaptation after a transplantation, the other is the recovery of cosmesis outcome after a breast lumpectomy. This work, that is still very much in progress, may teach us some lessons. We are convinced that the digital revolution that is transforming the working environment of the surgeon makes closer collaboration between surgeons and computational scientist unavoidable. We believe that “computational surgery” will allow the community to develop predictive model of the surgery outcome and greatprogresses in surgery procedures that goes far beyond the operating room procedural aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LeRoy Heinrichs, W., Srivastava, S., Montgomery, K., et al.: The fundamental manipulations of surgery: a structured vocabulary for designing surgical curricula and simulators. The Journal of the American Association of Gynecologic Laparoscopists 11, 450–456 (2004)

    Article  Google Scholar 

  2. de Bissy, F., et Guerrand, R. H.: Ambroise Paré, Oeuvres completes remises en ordre et en francais moderne, Union latine del’edition, 3 tomes et un index (1983)

  3. Chaplain, M. A. J.: Modelling aspects of cancer growth: Insight from mathematical and numerical analysis and computational simulation. Multiscale Problems in the Life Sciences, Lecture Note in Mathematics 1940, 147–200 (2008)

  4. Cristini, V., Lowengrub, J.: Multiscale Modeling of Cancer: an Integrated Experimental and Mathematical Modeling Approach. Cambrdge University Press (2010)

  5. Rockne, R., Rockhill, J. K., Mrugala, M., et al.: Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modelling approach. Physics in Medicine and Biology, 55, 3271–3285 (2010)

    Article  Google Scholar 

  6. Swanson, K. R., Alvord Jr. E. C., Murray, J. D.: A quantitative model for differential motility of gliomas in grey and white matter. Cell Proliferation 33, 317–329 (2000)

    Article  Google Scholar 

  7. Wang, C., Rockhill, J. K., Mrugala, M., et al.: Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Research 69, 9133–9140 (2009)

    Article  Google Scholar 

  8. Campbell, A., Sivakumaran, T., Davidson, M., et al.: Mathematical modeling of liver metastases tumour growth and control with radiotherapy. Phys. Med. Biol. 53, 7225–7239 (2008)

    Article  Google Scholar 

  9. Furchtgott, L. A., Chow, C. C., Vipul, P.: A model of liver regeneration. Biophysical Journal Volume 96, 3926–3935 (2009)

    Article  Google Scholar 

  10. Hoehme, S., Brulport, M., Bauer, A., et al.: Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc. Natl. Acad. Sci. (USA) 107, 10371–10376 (2010)

    Article  Google Scholar 

  11. Berceli, S. A., Tran-Son-Tay, R., Garbey, M. et al.: Hemodynamically driven vein graft remodeling: a systems biology approach. Vascular 17, 24–31 (2009)

    Article  Google Scholar 

  12. Fitzgibbon, G. M., Kafka, H. P., Leach, A. J., et al.: Coronary bypass graft fate and patient outcome: Angiographic follow-up of 5,065 grafts related to survival and reoperation in 1388 patients during 25 years. J. Am. Coll. Cardiol. 28, 616–626 (1996)

    Article  Google Scholar 

  13. Dobrin, P. B., Littooy, F. N., Endean, E. D.: Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery 105, 393–400 (1989)

    Google Scholar 

  14. Fillinger, M. F., Cronenwett, J. L., Besso, S., et al.: Vein adaptation to the hemodynamic environment of infrainguinal grafts. J. Vasc. Surg. 19, 970–979 (1994)

    Article  Google Scholar 

  15. Galt, S. W., Zwolak, R. M., Wagner, R. J., et al.: Differential response of arteries and vein grafts to blood flow reduction. J. Vasc. Surg. 17, 563–570 (1993)

    Article  Google Scholar 

  16. Mills, J. L., Bandyk, D. F., Gahtan, V., et al.: The origin of infrainguinal vein graft stenosis: A prospective study based on duplex surveillance, J. Vasc. Surg. 21, 16–25 (1995)

    Article  Google Scholar 

  17. Varty, K., Allen, K. E., Bell, P. R. F., et al.: Infrainguinal vein graft stenosis. Br. J. Surg. 80, 825–833 (1993)

    Article  Google Scholar 

  18. Zwolak, R. M., Adams, M. C, Clowes, A. W.: Kinetics of vein graft hyperplasia: Association with tangential stress. J. Vasc. Surg. 5, 126–136 (1987)

    Google Scholar 

  19. Berceli, S. A., Davies, M. G., Kenagy, R. D., et al.: Flow-induced neointimal regression in baboon polytetrafluoroethylene grafts is associated with decreased cell proliferation and increased apoptosis. Journal of Vascular Surgery 36, 1248–1255 (2002)

    Article  Google Scholar 

  20. Furuyama, T., Komori, K., Shimokawa, H., et al.: Long-term inhibition of Rho kinase suppresses intimal thickening in autologous vein grafts in rabbits. Journal of Vascular Surgery 43, 1249–1256 (2006)

    Article  Google Scholar 

  21. Jiang, Z., Wu, L., Miller, B. L., et al.: A novel vein graft model: adaptation to differential flow environments. American Journal of Physiology — Heart and Circulatory Physiology 286, H240–H245 (2004)

    Article  Google Scholar 

  22. Jiang, Z., Tao, M., Omalley, K. A., et al.: Established neointimal hyperplasia in vein grafts expands via TGF-β-mediated progressive fibrosis. American Journal of Physiology - Heart and Circulatory Physiology 297, H1200–H1207 (2009)

    Article  Google Scholar 

  23. Hoch, J. R., Stark, V. K., Rooijen, N,, et al.: Macrophage depletion alters vein graft intimal hyperplasia. Surgery 126, 428–437 (1999)

    Article  Google Scholar 

  24. Bass, B. L., Garbey, M.: Breast conservative therapy for breast cancer: targets for investigation to improve results, In: Garbey, M., Bass, B. L., Collet, C., et al., eds. Computational Surgery and Dual Training. Springer, New York (2010)

    Google Scholar 

  25. Thanoon, D., Garbey, M., Kim, N. H., et al.: a computational framework for breast surgery: application to breast conserving therapy, In Garbey, M., Bass, B., De Matelin, M., et al. eds. Computational Surgery and Dual Training, Springer Verlag, 249–268 (2009)

  26. Whelan, T. J., Levine, M., Julian, J., et al.: The effects of radiation therapy on quality of life of women with breast carcinoma: Results of a randomized trial. American Cancer Society 88, 2260–2266 (2000)

    Google Scholar 

  27. Budrukkar, A., Sarin, R., Shrivastava, S. et al.: Cosmesis, late sequelae and local control after breast-conserving therapy: Influence of type of tumour bed boost and adjuvant chemotherapy. Clinical Oncology 19, 596–603 (2007)

    Article  Google Scholar 

  28. Al-Ghazal, S. K., Fallowfield, L., Blamey, R. W.: Does cosmetic outcome from treatment of primary breast cancer influence psychosocial morbidity? European Journal of Surgical Oncology 25, 571–573 (1999)

    Article  Google Scholar 

  29. Garbey, M., Thanoon, D., Salmon, R., et al.: Multiscale modeling and computational surgery: application to breast conservative therapy. JSSCM 5, 81–89 (2011)

    Google Scholar 

  30. Fung, Y. C.: Biomechanics: Motion, Flow, Stress and Growth, Springer Verlag, New York (1990)

    MATH  Google Scholar 

  31. Murray, J. D.: Mathematical Biology: II Spatial Modles and Biomedical Applications. 3rd edn. Springer, New York 2003.

    Google Scholar 

  32. Garbey, M., Berceli, S., Tran Son Tay, R., et al.: A Dynamical System that Describes Vascular Adaptation, manuscript submitted.

  33. Thanoon, D.: Computational framework for local breast cancer treatment, [Ph. D. Thesis] Department of Computer Science, University of Houston (2011)

  34. Dormand, E. L., Banwell, P. E., EE Goodacre, T.: Radiotherapy and Wound Healing. International Wound Journal. 2, (2005)

  35. Tranquillo, R. T., Murray, J. D.: Continuum model of fibroblast-driven wound contraction: inflammation-mediation. Journal of Theoretical Biology 158, 135–172 (1992)

    Article  Google Scholar 

  36. Olsen, L., Sherratt, J. A., Maini, P. K.: A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. J. Theor. Biol. 177, 113–128 (1995)

    Article  Google Scholar 

  37. Mc Dougall, S., Dallon, J., Serratt, J., et al.: Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Phil, Trans. R. Soc. A 364, 1385–1405 (2006)

    Article  Google Scholar 

  38. Javierre, E., Vermolen, F. J., Vuik, C., et al.: A mathematical analysis of physiological and morphological aspects of wound closure. J. Math. Biol. 59, 605–630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sherrat, J. A., Dallon, J. C.: Theoretical model of wound healing: past successes and future challenges. C. R. Biologies 325, 557–564 (2002)

    Article  Google Scholar 

  40. Javierre, E., Moreo, P., Doblar’e, M., et al.: Numerical model of mechano-chemical theory for wound contraction analysis. International Journal of Solids and Structures 46, 3597–3606 (2009)

    Article  MATH  Google Scholar 

  41. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematics Science series 153, Springer Verlag (2003)

  42. Ramière, I., Angot, P., Belliard, M.: A general fictitious domain method with immersed jumps and multilevel nested structured meshes. Journal of Computational Physics 225, 1347–1387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Omens, J. H., Miller, T. R., Covell, J.W.: Relationship between passive tissue strain and collagen uncoiling during healing of infarcted myocardium. Cardiovascular Research 33, 351–358 (1997)

    Article  Google Scholar 

  44. Hwang, M., Berceli, S. A., Garbey, M., et al.: The dynamics of vein graft remodeling induced by hemodynamic forces - a mathematical model. Biomechanics and Modeling in Mechanobiology. 11, 411–423 (2012)

    Article  Google Scholar 

  45. Hwang, M., Garbey, M., Berceli, S. A., et al.: Ruled-based simulation of multi-cellular biological systems - a review of modeling techniques. Cellular and Molecular Bioengineering 2, 285–295 (2009)

    Article  Google Scholar 

  46. Hwang, M., Berceli, S. A., Tran-Son-Tay, R.: Modeling and role of leukocytes in inflammation, In: Garbey, M., Bass, B. L., Collet, C., et al., eds. Computational Surgery and Dual Training. Springer, New York (2010)

    Google Scholar 

  47. Hwang, M., Garbey, M., Berceli, S. A., et al.: A First Rule Base Simulation of Vein Graft Remodeling In: Garbey, B., Bass, S., Berceli, P., et al., eds. Computational Surgery and Dual Training. New York: Springer Verlag (2012)

    Google Scholar 

  48. Hwang, M., Garbey, M., Berceli, S. A., et al.: Rule-Based Model of Vein Graft Remodeling, mansucript submitted.

  49. Wang, Y., Xu, M., Wang, Z., et al.: How to cluster gene expression dynamics in response to environmental signals. Briefings in Bioinformatics 13, 162–174 (2011)

    Article  Google Scholar 

  50. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkhuser, Boston (2005)

    MATH  Google Scholar 

  51. Thorne, B. C., Bailey, A. M., Peirce, S. M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief Bioinform 8, 245–257 (2007)

    Article  Google Scholar 

  52. Gilles, M.: Breast conservative surgery pilot study: data acquisition design and image processing. Master Thesis, Department of Computer Science, University of Houston, (2012)

  53. Azar, F. S., Metaxas, D. N., Schnall, M. D.: A finite element model of the breast for predicting mechanical deformations during interventional procedures. Proc. Int. Soc. Magn. Reson. Med. 7, 1084–1085 (1999)

    Google Scholar 

  54. Azar, F. S., Metaxas, D. N., Schnall, M. D.: Methods for modeling and predicting mechanical deformations of the breast under external perturbations. Medical Image Analysis 6, 1–27 (2002)

    Article  Google Scholar 

  55. Chung, J. H.: Modelling mammographic mechanics, Auckland Bioengineering Institute, The University of Auckland (2008)

  56. Ozan, C.: Mechanical modeling of brain and breast tissue, [Ph. D. Thesis] Georgia Institute of Technology (2008)

  57. Tanner, C.: A method for the comparison of biomechanical breast models, Mathmatical Methods in Biomedical Image Analysis, 11–18 (2001)

  58. Tanner, C.: The comparison of biomechanical breast models: initial results, ANSYS Proceedings (2002)

  59. Tanner, C., Schnabel, J. A., Derek, L. G. H., et al.: Factors influencing the accuracy of biomechanical breast models, American Association of Physicists in Medicine 33, 1758–1769 (2006)

    Google Scholar 

  60. Taylor, et al.: Factors influencing cosmetic results after conservation therapy for breast cancer. Int. J. Radiation Oncology Biol. Phys. 31, 753–764 (1995)

    Article  Google Scholar 

  61. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. Image Processing, IEEE Transactions on, 17, 1–11 (2008)

    Article  MathSciNet  Google Scholar 

  62. Yang, S. C., Wang, C. M., Hsu, H. H., et al.: Contrast enhancement and tissues classification of breast MRI using Kalman filter-based linear mixing method. Comput Med Imaging Graph. 33, 187–196 (2009)

    Article  Google Scholar 

  63. Rajagopal, V.: Modelling Breast Tissue Mechanics Under Gravity Loading, Auckland Bioengineering Institute, The University of Auckland (2007)

  64. Rose, S. C., Nelson, T. R., Deutsch, R. J.: Display of — dimensional ultrasonographic images for interventional procedures: volume-rendered versusmultiplanar display. Ultrasound Med. 23, 1465–1473 (2004)

    Google Scholar 

  65. http://www.ansys.com

  66. Garbey, M., Tromeur-Dervout, D.: A parallel adaptive coupling algorithm for systems of differential equations. J. Comput. Phys. 161, 401–427 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. Roller, S., Klimach, H.: A multi-scale coupling scheme on heterogeneous supercomputers. In: Proceedings of The Seventh International Conference on Engineering Computational Technology (ECT2010), Valencia, Spain (2010)

  68. Collins, E. D., Moore, C. P., Clay, K. F., et al.: Can women with early-stage breast cancer make an informed decision for mastectomy? J. Clin. Oncol. 27, 519–525 (2009)

    Article  Google Scholar 

  69. Lacovara, J. E., Arzouman, J., Kim, C. J., et al.: Are patients with breast cancer satised with their decision making? a comparison over time. Clin. J. Oncol. Nurs. 15, 320–323 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbey, M., Bass, B.L. & Berceli, S. Multiscale mechanobiology modeling for surgery assessment. Acta Mech Sin 28, 1186–1202 (2012). https://doi.org/10.1007/s10409-012-0133-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0133-4

Keywords

Navigation