Skip to main content
Log in

Experimental analysis of crack tip fields in rubber materials under large deformation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A three-nested-deformation model is proposed to describe crack-tip fields in rubber-like materials with large deformation. The model is inspired by the distribution of the measured in-plane and out-of-plane deformation. The inplane displacement of crack-tip fields under both Mode I and mixed-mode (Mode I–II) fracture conditions is measured by using the digital Moiré method. The deformation characteristics and experimental sector division mode are investigated by comparing the measured displacement fields under different fracture modes. The out-of-plane displacement field near the crack tip is measured using the three-dimensional digital speckle correlation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellamy, K., Limbert, G., Waters, M. G., et al.: An elastomeric material for facial prostheses: synthesis, experimental ad numerical testing aspects. Biomaterials 24, 5061–5066 (2003)

    Article  Google Scholar 

  2. Mars, W. V., Fatemi, F.: A literature survey on fatigue analysis approaches for rubber. Int. J. Fatigue 24, 949–961 (2002)

    Article  MATH  Google Scholar 

  3. Trapper, P., Volokh. K. Y.: Cracks in rubber. Int. J. Solids Struct. 45, 6034–6044 (2008)

    Article  MATH  Google Scholar 

  4. Chow, C. L., Lu, T. J.: Fatigue crack propagation in metals and polymers with unified formulation. Tire Sci. Technol. 20, 106–129 (1992)

    Article  Google Scholar 

  5. Lindley, P. B.: Non-relaxing crack growth and fatigue in a noncrystallizing rubber. Rubber. Chem. Technol. 47, 1253–1264 (1974)

    Article  Google Scholar 

  6. Thomas, A. G.: Rupture of rubber. V. Cut growth in natural rubber vulcanizates. J. Polym. Sci. 31, 467–480 (1958)

    Article  Google Scholar 

  7. Geubelle, P. H., Knauss, W. G.: Finite strain at the tip of the crack in a sheet of hyperelastic material: homogeneous case. J. Elast 35, 61–98 (1994)

    Article  MATH  Google Scholar 

  8. Knowles, J. K.: A nonlinear effect in mode II crack problems. Eng. Fract. Mech. 15, 469–476 (1981)

    Article  Google Scholar 

  9. Knowles, J. K., Sternberg, E.: An asymptotic finite-deformation analysis of the elastostatic field near the tip of the crack. J. Elast 3, 67–107 (1973)

    Article  MathSciNet  Google Scholar 

  10. Wong, F. S., Shield, R. T.: Large plane deformation of thin elastic sheets of neo-hookean material. Z. Angew Math. Phys. 20, 176–199 (1969)

    Article  MATH  Google Scholar 

  11. Gao, Y. C., Gao, T. J.: Mechanical behavior of two kinds of rubber materials. Int. J. Solids Struct. 36, 5545–5558 (1999)

    Article  MATH  Google Scholar 

  12. Shi, Z. F., Gao, Y. C.: Strain-stress field near the notch tip of a rubber-sheet. Acta Mechanica Sinica 11, 169–177 (1995)

    Article  MATH  Google Scholar 

  13. Aubard, X, Boucard, P. A., Ladeveze, P., et al.: Modeling and simulation of damage in elastomer structures at high strains. Comput. Struct. 80, 2289–2298 (2002)

    Article  Google Scholar 

  14. Mazich, K. A., Morman, K. N., Oblinger, F. G., et al.: The effect of specimen thickness on the tearing energy of gum vulcanizate. Rubber Chem. Technol. 62, 850–862 (1989)

    Article  Google Scholar 

  15. Chevalier, L., Calloch, S., Hild, F., et al.: Digital image correlation used to analyze the multiaxial behavior of rubber-like materials. Eur. J. Mech. A-Solids 20, 169–187 (2001)

    Article  MATH  Google Scholar 

  16. Li, X. L., Kang, Y. L., Qiu, W., et al.: Application of the digital Moiré method in fracture analysis of cracked rubber sheet. Acta Mech. Solida Sin. 19, 241–247 (2006)

    MATH  Google Scholar 

  17. Luo, P. F., Chao, Y. L., Sutton, M. A., et al.: Accurate measurement of three-dimensional deformable and rigid bodies using computer vision. Exp. Mech. 33, 123–132 (1993)

    Article  Google Scholar 

  18. Asundi, A., Yung, K. H.: Logical Moiré and applications. Exp. Mech. 31, 236–242 (1991)

    Article  Google Scholar 

  19. Dai, F. L., Xing, Y. M.: Nano-moire method. Acta Mechanica Sinica 15: 283–288 (1999)

    Article  Google Scholar 

  20. Xie, H. M., Liu, Z. W., Fang, D. N., et al.: Development nano-Moiré method with high-resolution microscopy at FML. Opt. Lasers Eng. 43, 904–918 (2005)

    Article  Google Scholar 

  21. Xing, Y. M., Kishimoto, S., Zhao, Y. R.: An electron Moiré method for a common SEM. Acta Mechanica Sinica 22: 595–602 (2006)

    Article  Google Scholar 

  22. Xiao, X., Kang, Y. L., Hou, Z. D., et al.: Displacement and strain measurement by circular and radial gratings Moiré method. Exp. Mech. 50, 239–244 (2010)

    Article  Google Scholar 

  23. Wang, H. W., Kang, Y. L., Zhang, Z. F., et al.: Size effect on fracture toughness of metallic foil. Int. J. Fract. 123, 177–185 (2003)

    Article  Google Scholar 

  24. Zhang, Z. F., Kang, Y. L., Wang, H. W., et al.: A novel coarse-fine search scheme for digital image correlation method. Meas. 39, 710–718 (2006)

    Article  Google Scholar 

  25. Sutton, M. A., Orteu, J. J., Schreier, H. W.: Image Correlation for Shape, Motion and Deformation Measurements, Springer (2008)

  26. Vikrant T., Michael, A. S., el al.: Application of 3D image correlation for full-field transient plate deformation measurements during blast loading, International Journal of Impact Engineering 36, 862–874 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Lan Kang.

Additional information

The project was supported by the National Natural Science Foundation of China (10732080 and 11102134).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Song, HP., Kang, YL. et al. Experimental analysis of crack tip fields in rubber materials under large deformation. Acta Mech Sin 28, 432–437 (2012). https://doi.org/10.1007/s10409-012-0047-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0047-1

Keywords

Navigation