Skip to main content
Log in

Self-powered microfluidic pump using evaporation from diatom biosilica thin films

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In recent years, researchers have successfully applied diatom biosilica to molecular detection platforms including Surface-Enhanced Raman Scattering (SERS) optofluidic sensors that are currently capable of detecting a variety of biological and chemical molecules at concentrations as low as 10−10 M. This study investigates the feasibility of an SERS device that couples the sensing and pumping capabilities of diatom biosilica thin films by determining flow rate limitations and stability. In this paper, we quantify the ability of porous diatom biosilica thin films to continuously pump deionized (DI) water from a reservoir via wicking flow by utilizing the strong capillary forces of the porous film coupled with evaporation. Our microfluidic device is comprised of a narrow horizontal reservoir fixed to a horizontal capillary whose end contacts a diatom biosilica film. Flow rates were controlled by altering the size and/or temperature of the biosilica porous film, determined by tracking the liquid meniscus displacement in the reservoir, and correlated with a modified laminar boundary-layer model. System stability was observed by tracking flow rates over the course of a given experiment, image analysis of the meniscus contacting the film, and a flow duration study. We found that for untreated DI water bubbles begin to form in the capillary tube at temperatures above 40 °C, but degassed water remains stable at temperatures of 90 °C and below. The pumping capabilities of the films ranged from 0.11 to 10.46 µL/min, matched theoretical predictions, demonstrated stable flow trends, and maintained flow for over 48 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Bergman TL, Incropera FP (2011) Fundamentals of heat and mass transfer. 7th ed./Theodore 1. Bergman [and others], 7th edn. Wiley, Hoboken

    Google Scholar 

  • Boyd-Moss M, Baratchi S, Di Venere M, Khoshmanesh K (2016) Self-contained microfluidic systems: a review. Lab Chip 16:3177–3192. https://doi.org/10.1039/C6LC00712K

    Article  Google Scholar 

  • Chen K-Y, Chen K-E, Wang K (2012) A flexible evaporation micropump with precision flow rate control for micro-fluidic systems. In: IEEE

  • Choi YH, Chung KH, Lee SS (2009) Microfluidic actuation by dehydration of hydrogel. In: IEEE

  • Convery N, Gadegaard N (2019) 30 years of microfluidics. Micro Nano Eng 2:76–91. https://doi.org/10.1016/j.mne.2019.01.003

    Article  Google Scholar 

  • Dollet B, Boulogne F (2017) Natural convection above circular disks of evaporating liquids. Phys Rev Fluids 2:053501. https://doi.org/10.1103/PhysRevFluids.2.053501

    Article  Google Scholar 

  • Effenhauser C, Harttig H, Krämer P (2002) An evaporation-based disposable micropump concept for continuous monitoring applications. Biomed Microdevice 4:27–32

    Article  Google Scholar 

  • Ever Aguirre L, Ouyang L, Elfwing A, Hedblom M, Wulff A, Inganäs O (2018) Diatom frustules protect DNA from ultraviolet light. Sci Rep 8:1–6

    Article  Google Scholar 

  • Goedecke N, Eijkel J, Manz A (2002) Evaporation driven pumping for chromatography application. Lab Chip 2:219–223. https://doi.org/10.1039/B208031C

    Article  Google Scholar 

  • Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127. https://doi.org/10.1016/j.tibtech.2008.11.003

    Article  Google Scholar 

  • Guan Y-X, Xu Z-R, Dai J, Fang Z-L (2006) The use of a micropump based on capillary and evaporation effects in a microfluidic flow injection chemiluminescence system. Talanta 68:1384–1389

    Article  Google Scholar 

  • Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ Sci 4:3930–3941. https://doi.org/10.1039/C0EE00306A

    Article  Google Scholar 

  • Jingmin L, Chong L, Zheng X, Kaiping Z, Xue K, Liding W (2012) A microfluidic pump/valve inspired by xylem embolism and transpiration in plants (a bio-inspired microfluidic pump/valve). Plos One 7:e50320. https://doi.org/10.1371/journal.pone.0050320

    Article  Google Scholar 

  • Juncker D et al (2002) Autonomous microfluidic capillary system. Anal Chem 74:6139–6144

    Article  Google Scholar 

  • Kearns H, Bedics MA, Shand NC, Faulds K, Detty MR, Graham D (2016) Sensitive SERS nanotags for use with 1550 nm (retina-safe) laser excitation. Analyst 141:5062–5065

    Article  Google Scholar 

  • Kim H, Kim K, Lee SJ (2016) Compact and thermosensitive nature-inspired micropump. Sci Rep 6:36085

    Article  Google Scholar 

  • Kirby BJ (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, New York

    Book  Google Scholar 

  • Kitahama Y, Ozaki Y (2016) Surface-enhanced resonance Raman scattering of hemoproteins and those in complicated biological systems. Analyst 141:5020–5036

    Article  Google Scholar 

  • Kong X et al (2016) Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica. Nanoscale 8:17285–17294

    Article  Google Scholar 

  • Kong X et al (2017) Detecting explosive molecules from nanoliter solution: a new paradigm of SERS sensing on hydrophilic photonic crystal biosilica. Biosens Bioelectron 88:63–70

    Article  Google Scholar 

  • Kraai JA, Rorrer GL, Wang AX (2019) Highly-porous diatom biosilica stationary phase for thin-layer chromatography. J Chromatogr A 1591:162–170

    Article  Google Scholar 

  • Laser DJ (2004) Areview of micropumps. J Micromech Microeng 14:R35–R64

    Article  Google Scholar 

  • Li Y-J, Yang Y-N, Zhang H-J, Xue C-D, Zeng D-P, Cao T, Qin K-R (2019) A microfluidic micropipette aspiration device to study single-cell mechanics inspired by the principle of wheatstone bridge. Micromachines. https://doi.org/10.3390/mi10020131

    Article  Google Scholar 

  • Lin S, Lin S, Zhu W, Jin Y, Crozier KB (2013) Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity. Nano Lett 13:559–563

    Article  Google Scholar 

  • Long DA (2002) The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Chichester Press, Chichester

    Book  Google Scholar 

  • Lynn NS, Dandy DS (2009) Passive microfluidic pumping using coupled capillary/evaporation effects. Lab Chip 9:3422–3429. https://doi.org/10.1039/B912213C

    Article  Google Scholar 

  • Marshall KE, Robinson EW, Hengel SM, Pasa-Tolic L, Roesijadi G (2012) FRET imaging of diatoms expressing a biosilica-localized ribose sensor. PLoS One 7(3):e33771

    Article  Google Scholar 

  • Masoodi R, Pillai KM, Masoodi R, Pillai KM (2012) Wicking in porous materials: traditional and modern modeling approaches. CRC, Boca Raton

    Book  Google Scholar 

  • Namasivayam V (2003) Transpiration-based micropump for delivering continuous ultra-low flow rates. J Micromech Microeng 13:261–271

    Article  Google Scholar 

  • Nie C, Frijns AJH, Mandamparambil R, Toonder JMJ (2015) A microfluidic device based on an evaporation-driven micropump. (Report), p 17

  • Ohno KI, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29:4443–4453

    Article  Google Scholar 

  • Otto A (1992) Surface-enhanced raman scattering. J Phys Condens Matter 4:1143–1212

    Article  Google Scholar 

  • Ren F, Campbell J, Hasan D, Wang X, Rorrer GL, Wang AX (2013) Surface-enhanced Raman scattering on diatom biosilica photonic crystals. 8598:85980N-85980N-85988

  • Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181. https://doi.org/10.1038/nature13118

    Article  Google Scholar 

  • SE-FIT (2018) https://www.se-fit.com/about/

  • Sivashanmugan K, Squire K, Kraai JA, Tan A, Zhao Y, Rorrer GL, Wang AX (2019) Biological photonic crystal-enhanced plasmonic mesocapsules: approaching single-molecule optofluidic-SERS sensing. Adv Opt Mater 7:1900415

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  Google Scholar 

  • Taylor J, Huefner A, Li L, Wingfield J, Mahajan S (2016) Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy. Analyst 141:5037–5055

    Article  Google Scholar 

  • Temiz Y, Skorucak J, Delamarche E (2014) Capillary-driven microfluidic chips with evaporation-induced flow control and dielectrophoretic microbead trapping vol 8976. In: SPIE

  • Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196. https://doi.org/10.1039/C3CS35528D

    Article  Google Scholar 

  • Wang J, Ahmad H, Ma C, Shi Q, Vermesh O, Vermesh U, Heath J (2010) A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood. Lab Chip 10:3157–3162. https://doi.org/10.1039/c0lc00132e

    Article  Google Scholar 

  • White FM (1991) Viscous fluid flow. McGraw-Hill, New York

    Google Scholar 

  • Woias P (2005) Micropumps—past, progress and future prospects. Sens Actuators B Chem 105:28–38

    Article  Google Scholar 

  • Xiao-Ming C et al (2019) A capillary-evaporation micropump for real-time sweat rate monitoring with an electrochemical sensor. Micromachines 10:457. https://doi.org/10.3390/mi10070457

    Article  Google Scholar 

  • Xu Z-R, Zhong C-H, Guan Y-X, Chen X-W, Wang J-H, Fang Z-L (2008) A microfluidic flow injection system for DNA assay with fluids driven by an on-chip integrated pump based on capillary and evaporation effects. Lab Chip 8:1658–1663. https://doi.org/10.1039/B805774E

    Article  Google Scholar 

  • Xu Y-h, Yan W-p, Qin K-r, Cao T (2019) Three-dimensional flow field simulation of steady flow in the serrated diffusers and nozzles of valveless micro-pumps. J Hydrodyn 31:413–420. https://doi.org/10.1007/s42241-018-0121-7

    Article  Google Scholar 

  • Zhang A, Zha Y, Zhang J (2014) A surface acoustic wave micropump to pump fluids from a droplet into a closed microchannel using evaporation and capillary effects. AIP Adv 4:127144

    Article  Google Scholar 

  • Zhou Q, Kim T (2016) Review of microfluidic approaches for surface-enhanced Raman scattering. Sens Actuators B Chem 227:504–514

    Article  Google Scholar 

  • Zimmermann M, Bentley S, Schmid H, Hunziker P, Delamarche E (2005) Continuous flow in open microfluidics using controlled evaporation. Lab Chip 5:1355–1359

    Article  Google Scholar 

  • Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125. https://doi.org/10.1039/B609813D

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Science Foundation (NSF) for funding our research through CBET awards 1701339 and 1701329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrett, H., Wade, M., Kraai, J. et al. Self-powered microfluidic pump using evaporation from diatom biosilica thin films. Microfluid Nanofluid 24, 36 (2020). https://doi.org/10.1007/s10404-020-02343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-020-02343-5

Keywords

Navigation