Skip to main content
Log in

Picking up and placing a liquid marble using dielectrophoresis

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A liquid marble is a droplet coated with hydrophobic powder. The porous and hydrophobic coating prevents physical contact between the liquid and its surroundings without compromising gas exchange. As such, the liquid marble is an excellent platform for culturing cells. With the promising biomedical applications of the liquid marble, numerous studies have been conducted to improve its handling using magnetism, which limits the liquid marble coating to hydrophobised ferromagnetic materials. In this paper, we propose a novel, simple and cheap method of liquid marble manipulation such as pick and place based on the well-known dielectrophoresis force. Liquid marbles of various volumes were picked up using an electrode with a high voltage bias, moved to a different location and placed intact. This method provides reliable handling to a host of existing non-ferromagnetic liquid marbles without the need to engineer their coatings. Furthermore, this method enables the automation of the liquid marble handling process. This paper provides an empirical relationship to link the pickup force to the experimental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arbatan T, Al-Abboodi A, Sarvi F, Chan PP, Shen W (2012) Tumor inside a pearl drop. Adv Healthc Mater 1:467–469

    Article  Google Scholar 

  • Aussillous P, Quere D (2001) Liquid marbles Nature 411:924–927

    Article  Google Scholar 

  • Aussillous P, Quere D (2006) Properties of liquid marbles. Proc. R Soc A 462:973–999

    Article  Google Scholar 

  • Bhosale PS, Panchagnula MV, Stretz HA (2008) Mechanically robust nanoparticle stabilized transparent liquid marbles. Appl Phys Lett 93:034109

    Article  Google Scholar 

  • Biganzoli F, Fantoni G (2008) A self-centering electrostatic microgripper. J Manufacturing Syst 27:136–144

    Article  Google Scholar 

  • Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16:266–271

    Article  Google Scholar 

  • Bormashenko E (2012) New insights into liquid marbles. Soft Matter 8:11018–11021

    Article  Google Scholar 

  • Bormashenko E (2017) Liquid marbles, elastic nonstick droplets: from minireactors to Self-propulsion Langmuir 33:663–669

    Article  Google Scholar 

  • Bormashenko E, Pogreb R, Bormashenko Y, Musin A, Stein T (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on. superhydrophobic surfaces Langmuir 24:12119–12122

    Article  Google Scholar 

  • Bormashenko E, Pogreb R, Balter R, Gendelman O, Aurbach D (2012a) Composite non-stick droplets and their actuation with electric field. Appl Phys Lett 100:151601

    Article  Google Scholar 

  • Bormashenko E, Pogreb R, Stein T, Whyman G, Schiffer M, Aurbach D (2012b) Electrically deformable liquid marbles. J Adhes Sci Technol 25:1371–1377

    Article  Google Scholar 

  • Bormashenko E, Bormashenko Y, Grynyov R, Aharoni H, Whyman G, Binks BP (2015) Self-propulsion of liquid marbles: leidenfrost-like levitation driven by Marangoni flow. J Phys Chem C 119:9910–9915

    Article  Google Scholar 

  • Chen Z et al (2017) Liquid marble coalescence and triggered microreaction driven by acoustic levitation Langmuir 33:6232–6239

    Article  Google Scholar 

  • Dorvee JR, Derfus AM, Bhatia SN, Sailor MJ (2004) Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nat Mater 3:896–899

    Article  Google Scholar 

  • Dupin D, Armes SP, Fujii S (2009) Stimulus-responsive liquid marbles. J Am Chem Soc 131:5386–5387

    Article  Google Scholar 

  • Fantoni G, Biganzoli F (2004) Design of a novel electrostatic gripper J Manuf Sci Prod 6:163-80

    Google Scholar 

  • Fujii S, Suzaki M, Armes SP, Dupin D, Hamasaki S, Aono K, Nakamura Y (2011) Liquid marbles prepared from pH-responsive sterically stabilized Latex Particles Langmuir 27:8067–8074

    Article  Google Scholar 

  • Han X, Lee HK, Lim WC, Lee YH, Phan-Quang GC, Phang IY, Ling XY (2016) Spinning liquid marble and its dual applications as microcentrifuge and miniature localized viscometer ACS. Appl Mater Interfaces 8:23941–23946

    Article  Google Scholar 

  • Hesselbach J, Buttgenbach S, Wrege J, Butefisch S, Graf C (2001) Centering electrostatic microgripper and magazines for microassembly tasks. Microrobitics and microassembly III, vol 4568, SPIE, Boston, MA, USA, pp 270–277

  • Kavokine N, Anyfantakis M, Morel M, Rudiuk S, Bickel T, Baigl D (2016) Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Edit 55:11183–11187

    Article  Google Scholar 

  • Khaw MK, Ooi CH, Mohd-Yasin F, Vadivelu R, John JS, Nguyen N-T (2016) Digital microfluidics with a magnetically actuated floating liquid marble Lab. on a Chip 16:2211–2218

    Article  Google Scholar 

  • Khaw MK, Ooi CH, Mohd-Yasin F, Nguyen AV, Evans GM, Nguyen N-T (2017) Dynamic behaviour of a magnetically actuated floating liquid marble. Microfluid Nanofluid 21:110

    Article  Google Scholar 

  • Lin X, Ma W, Wu H, Cao S, Huang L, Chen L, Takahara A (2016) Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chem Commun 52:1895–1898

    Article  Google Scholar 

  • Liu Z, Fu X, Binks BP, Shum HC (2017) Coalescence of electrically charged liquid marbles. Soft Matter 13:119–124

    Article  Google Scholar 

  • Long Z, Shetty AM, Solomon MJ, Larson RG (2009) Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface Lab. on a Chip 9:1567–1575

    Article  Google Scholar 

  • McHale G, Newton MI (2011) Liquid marbles: principles and applications Soft Matter 7:5473–5481

    Article  Google Scholar 

  • McHale G, Newton MI (2015) Liquid marbles: topical context within soft matter and recent progress. Soft Matter 11:2530–2546

    Article  Google Scholar 

  • Mele E et al (2014) Biomimetic approach for liquid encapsulation with. nanofibrillar cloaks Langmuir 30:2896–2902

    Article  Google Scholar 

  • Miao YE, Lee HK, Chew WS, Phang IY, Liu T, Ling XY (2014) Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. Chem Commun (Camb) 50:5923–5926

    Article  Google Scholar 

  • Nakai K, Fujii S, Nakamura Y, Yusa S-i (2013) Ultraviolet-light-responsive Liquid. Marbles Chem Lett 42:586–588

    Article  Google Scholar 

  • Newton MI, Herbertson DL, Elliott SJ, Shirtcliffe NJ, McHale G (2007) Electrowetting of liquid marbles. J Phys D 40:20–24

    Article  Google Scholar 

  • Ogawa S, Watanabe H, Wang L, Jinnai H, McCarthy TJ, Takahara A (2014) Liquid marbles supported by monodisperse poly(methylsilsesquioxane Particles Langmuir 30:9071–9075

    Article  Google Scholar 

  • Oliveira NM, Reis RL, Mano JF (2017) The potential of liquid marbles for Biomedical applications: a critical review Adv Healthc Mater 6:1700192-(n/a)

    Article  Google Scholar 

  • Ooi CH, Nguyen N-T (2015) Manipulation of liquid marbles Microfluid Nanofluid 19:483–495

    Article  Google Scholar 

  • Ooi CH, Nguyen AV, Evans GM, Gendelman O, Bormashenko E, Nguyen N-T (2015a) A floating self-propelling liquid marble containing aqueous ethanol solutions. RSC Adv 5:101006–101012

    Article  Google Scholar 

  • Ooi CH, Vadivelu RK, St John J, Dao DV, Nguyen N-T (2015b) Deformation of a floating liquid marble. Soft Matter 11:4576–4583

    Article  Google Scholar 

  • Ooi CH, Bormashenko E, Nguyen AV, Evans GM, Dao DV, Nguyen N-T (2016a) Evaporation of ethanol–water binary mixture sessile liquid marbles Langmuir 32:6097–6104

    Article  Google Scholar 

  • Ooi CH, Nguyen AV, Evans GM, Dao DV, Nguyen NT (2016b) Measuring the coefficient of friction of a small floating liquid. Marble Sci Rep 6:38346

    Article  Google Scholar 

  • Ooi CH, Plackowski C, Nguyen AV, Vadivelu RK, John JAS, Dao DV, Nguyen N-T (2016c) Floating mechanism of a small liquid marble. Sci Rep 6:21777

    Article  Google Scholar 

  • Paven M, Mayama H, Sekido T, Butt H-J, Nakamura Y, Fujii S (2016) Liquid marbles: light-driven delivery and release of materials using liquid marbles. Adv Funct Mater 26:19 /2:3372–3372

    Google Scholar 

  • Sarvi F et al (2015) Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4:77–86

    Article  Google Scholar 

  • Tian J, Fu N, Chen XD, Shen W (2013) Respirable liquid marble for the cultivation of microorganisms. Colloids Surf B 106:187–190

    Article  Google Scholar 

  • Ueno K, Hamasaki S, Wanless EJ, Nakamura Y, Fujii S (2014) Microcapsules fabricated from liquid marbles stabilized with latex particles Langmuir 30:3051–3059

    Article  Google Scholar 

  • Vadivelu RK et al (2015) Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci Rep 5:15083

    Article  Google Scholar 

  • Wang X, Wang X-B, Gascoyne PRC (1997) General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method. J Electrostat 39:277–295

    Article  Google Scholar 

  • Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic liquid marbles: a “precise”. Miniature Reactor Adv Mater 22:4814–4818

    Google Scholar 

  • Zang D, Chen Z, Zhang Y, Lin K, Geng X, Binks BP (2013) Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter 9:5067

    Article  Google Scholar 

  • Zang D, Li J, Chen Z, Zhai Z, Geng X, Binks BP (2015) Switchable Opening and closing of a liquid marble via ultrasonic levitation Langmuir 31:11502–11507

    Article  Google Scholar 

  • Zhang L, Cha D, Wang P (2012) Remotely controllable liquid marbles Adv Mater 24:4756–4760

    Article  Google Scholar 

  • Zhao Y, Fang J, Wang H, Wang X, Lin T (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4. Nanoparticles Adv Mater 22:707–710

    Article  Google Scholar 

  • Zhao Y, Xu ZG, Parhizkar M, Fang J, Wang XG, Lin T (2012) Magnetic liquid marbles, their manipulation and application in optical probing. Microfluid Nanofluid 13:555–564

    Article  Google Scholar 

  • Zhu GP, Nguyen NT, Ramanujan RV, Huang XY (2011) Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field Langmuir 27:14834–14841

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Australian Research Council for the discovery Grant DP170100277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Hong Ooi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “2018 International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip, Beijing, China” guest edited by Guoqing Hu, Ting Si and Zhaomiao Liu

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, C.H., Jin, J., Nguyen, A.V. et al. Picking up and placing a liquid marble using dielectrophoresis. Microfluid Nanofluid 22, 142 (2018). https://doi.org/10.1007/s10404-018-2163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2163-0

Keywords

Navigation