Skip to main content
Log in

Magnetohydrodynamic flow with slippage in an annular duct for microfluidic applications

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, we investigate theoretically the 3D laminar flow of an electrolyte in an annular duct driven by a Lorentz force. The duct is formed by two concentric electrically conducting cylinders limited by insulating bottom and top walls. A uniform magnetic field acts along the axial direction, while a potential difference is applied between the cylinders so that a radial electric current traverses the fluid. The interaction of the current and the magnetic field produces a Lorentz force that drives an azimuthal flow. The steady flow is solved using a Galerkin method with Bessel–Fourier series in the radial direction and trigonometric series along the vertical direction, allowing different combinations of slip conditions at the walls. The orthogonality of both series with the general boundary conditions of the third kind is used to find an analytic approximation. Velocity patterns and flow rates are explored by varying the aspect ratio of the duct and the gap between the cylinders, as well as the slippage at the walls. Results can provide useful information for optimization and design of annular microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  • Arumugam PU, Fakunle ES, Anderson EC, Evans SR, King KG, Aguilar ZP, Carter CS, Fritsch I (2006) Redox magnetohydrodynamics in a microfluidic channel: characterization and pumping. J Electrochem Soc 153:E185–E194

    Article  Google Scholar 

  • Bao JB, Harrison DJ (2003) Fabrication of microchips for running liquid chromatography by magnetohydrodynamic flow. In: Proceedings of the 7th international conference on miniaturized chemical and biochemical analysts systems, Squaw Valley

  • Bau HH, Zhu J, Qian S, Xiang Y (2003) A magneto-hydrodynamically controlled fluidic network. Sens Actuators B: Chem 88(2):205–216

    Article  Google Scholar 

  • Behr M (2004) On the application of slip boundary condition on curved boundaries. Int J Numer Methods Fluids 45(1):43–51

    Article  MATH  Google Scholar 

  • Digilov RM (2007) Making a fluid rotate: circular flow of a weakly conducting fluid induced by a Lorentz body force. Am J Phys 75(4):361–367

    Article  Google Scholar 

  • Einzel D, Panzer P, Liu M (1990) Boundary condition for fluid flow: curved or rough surfaces. Phys Rev Lett 64(19):2269

    Article  Google Scholar 

  • Enright R, Ghosh A, Gallagher A, Lei S, Persoons T (2016) Apparent slip enhanced magnetohydrodynamic pump. In: 2016 15th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm). IEEE, pp 1030–1034

  • Finlayson BA (1968) The Galerkin method applied to convective instability problems. J Fluid Mech 17(1):201–208

    Article  MATH  Google Scholar 

  • Finlayson BA (1972) The method of weighted residuals and variational principles. Mathematics in science and engineering. Academic, New York

    Google Scholar 

  • Gleeson JP (2005) Transient micromixing: examples of laminar and chaotic stirring. Phys Fluids 17(10):100,614

    Article  MathSciNet  MATH  Google Scholar 

  • Homsy A, Koster S, Eijkel JC, van den Berg A, Lucklum F, Verpoorte E, de Rooij NF (2005) A high current density DC magnetohydrodynamic (MHD) micropump. Lab Chip 5(4):466–471

    Article  Google Scholar 

  • Huang L, Wang W, Murphy M, Lian K, Ling ZG (2000) Liga fabrication and test of a DC type magnetohydrodynamic (MHD) micropump. Microsyst Technol 6(6):235–240

    Article  Google Scholar 

  • Kabbani H, Wang A, Luo X, Qian S (2007) Modeling redox-based magnetohydrodynamics in three-dimensional microfluidic channels. Phys Fluids (1994-Present) 19(8):083,604

    Article  MATH  Google Scholar 

  • Kang HJ, Choi B (2011) Development of the MHD micropump with mixing function. Sens Actuators A 165(2):439–445

    Article  Google Scholar 

  • Krymov V (1989) Stability and supercritical regimes of quasi-two-dimensional shear flow in the presence of external friction (experiment). Fluid Dyn 24(2):170–176

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35

    Article  Google Scholar 

  • Lauga E, Brenner M, Stone H (2007) Microfluidics: the no-slip boundary condition. In: Tropea C et al (eds) Springer handbook of experimental fluid mechanics. Springer, Berlin, Heidelberg, pp 1219–1240. doi:10.1007/978-3-540-30299-5_19

    Chapter  Google Scholar 

  • Lemoff AV, Lee AP (2000) An AC magnetohydrodynamic micropump. Sens Actuators B: Chem 63(3):178–185

    Article  Google Scholar 

  • Li D (2008) Encyclopedia of microfluidics and nanofluidics. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Nguyen B, Kassegne SK (2008) High-current density dc magenetohydrodynamics micropump with bubble isolation and release system. Microfluid Nanofluid 5(3):383–393

    Article  Google Scholar 

  • Ortiz-Pérez AS, Dávalos-Orozco LA (2011) Convection in a horizontal fluid layer under an inclined temperature gradient. Phys Fluids 23:084107-1–084107-11

    Article  Google Scholar 

  • Patel V, Kassegne SK (2007) Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sens Actuators B: Chem 122(1):42–52

    Article  Google Scholar 

  • Pérez-Barrera J, Pérez-Espinoza J, Ortiz A, Ramos E, Cuevas S (2015) Instability of electrolyte flow driven by an azimuthal Lorentz force. Magnetohydrodynamics 51(2):203–213

    Google Scholar 

  • Pérez-Barrera J, Ortiz A, Cuevas S (2016) Analysis of an annular MHD stirrer for microfluidic applications. In: Klapp J et al (eds) Recent advances in fluid dynamics with environmental applications. Springer, Berlin, pp 275–288

    Chapter  Google Scholar 

  • Qian S, Bau HH (2009) Magneto-hydrodynamics based microfluidics. Mech Res Commun 36(1):10–21

    Article  MATH  Google Scholar 

  • Qin M, Bau HH (2011) When MHD-based microfluidics is equivalent to pressure-driven flow. Microfluid Nanofluid 10:287–300

    Article  Google Scholar 

  • Qin M, Bau HH (2012) Magnetohydrodynamic flow of a binary electrolyte in a concentric annulus. Phys Fluids 24:037101-1–037101-20

    Article  Google Scholar 

  • Rivero M, Cuevas S (2012) Analysis of the slip condition in magnetohydrodynamic (MHD) micropumps. Sens Actuators B: Chem 166167:884–892

    Article  Google Scholar 

  • Smolentsev S (2009) MHD duct flows under hydrodynamic slip condition. Theor Comput Fluid Dyn 23(6):557–570

    Article  MATH  Google Scholar 

  • Stelzer Z, Cbron D, Miralles S, Vantieghem S, Noir J, Scarfe P, Jackson A (2015a) Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. I. Base flow. Phys Fluids 27(7):077,101

    Article  Google Scholar 

  • Stelzer Z, Miralles S, Cébron D, Noir J, Vantieghem S, Jackson A (2015b) Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. II. Instabilities. Phys Fluids (1994 Present) 27(8):084108

    Article  Google Scholar 

  • Stroock AD, Weck M, Chiu DT, Huck WT, Kenis PJ, Ismagilov RF, Whitesides GM (2000) Patterning electro-osmotic flow with patterned surface charge. Phys Rev Lett 84(15):3314

    Article  Google Scholar 

  • Tallarek U, Rapp E, Seidel-Morgenstern A, Van As H (2002) Electroosmotic flow phenomena in packed capillaries: from the interstitial velocities to intraparticle and boundary layer mass transfer. J Phys Chem B 106(49):12709–12721

    Article  Google Scholar 

  • West J, Karamata B, Lillis B, Gleeson JP, Alderman J, Collins J, Mathewson A, William L, Berney H (2002) Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab Chip 2:224–230

    Article  Google Scholar 

  • West J, Gleeson JP, Alderman J, Collins JK, Berney H (2003) Structuring laminar flows using annular magnetohydrodynamic actuation. Sens Actuators B: Chem 96(12):190–199

    Article  Google Scholar 

  • Woias P (2005) Micropumpspast, progress and future prospects. Sens Actuators B: Chem 105(1):28–38

    Article  Google Scholar 

  • Zhao Y, Zikanov DK (2011) Instability of magnetohydrodynamic flow in a annular channel at high Hartmann number. Phys Fluids 23:0184103-1–0184103-8

    Google Scholar 

  • Zhong J, Yi M, Bau HH (2002) Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sens Actuators A 96(1):59–66

    Article  Google Scholar 

Download references

Acknowledgements

A.S. Ortiz-Pérez thanks the K. of K., L. of L. and G. of G. Support from program PRODEP, Project UABC-PTC-513 and CONACYT, Mexico, Project 240785 is thankfully acknowledged. Technical support of Vicente Ortiz Jr., Salvador Melchor León, José Luis Guerrero Cervantes, Patricia Parra, Efraín Gamez, Raúl Vázquez Rios and Danyyel Farías is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ortiz-Pérez.

Appendix

Appendix

1.1 Boundary conditions of third kind

Required boundary conditions can be applied to Bessel functions of order \(\nu\); therefore,

$$\begin{aligned} \frac{v_{\nu ; m}}{r}\bigg |_{r=1} + ls_e\frac{d}{{\hbox {d}}r}\left( \frac{v_{\nu ; m}}{r}\right) \bigg |_{r=1}&=0 \end{aligned}$$
(70)
$$\begin{aligned} \frac{v_{\nu ; m}}{r}\bigg |_{r=\eta } - ls_i\frac{d}{{\hbox {d}}r}\left( \frac{v_{\nu ; m}}{r}\right) \bigg |_{r=\eta }&=0. \end{aligned}$$
(71)

In compact form

$$\begin{aligned} v_{\nu ; m}'(1)&=\left( 1-\frac{1}{ls_e}\right) v_{\nu ; m}(1) \end{aligned}$$
(72)
$$\begin{aligned} v_{\nu ; m}'(\eta )&=\left( \frac{1}{\eta }+\frac{1}{ls_i}\right) v_{\nu ; m}(\eta ). \end{aligned}$$
(73)

1.2 Orthogonality of Bessel functions with third kind boundary conditions

$$\begin{aligned} \frac{1}{r}\frac{d}{{\hbox {d}}r}\left( r\frac{{\hbox {d}} v_{\nu ; m}}{{\hbox {d}}r}\right) - \frac{\nu ^2}{r^2} v_{\nu ; m}&= -\alpha _m^2 v_{\nu ; m} \end{aligned}$$
(74)
$$\begin{aligned} \frac{1}{r}\frac{d}{{\hbox {d}}r}\left( r\frac{{\hbox {d}} v_{\nu ; n}}{{\hbox {d}}r}\right) - \frac{\nu ^2}{r^2} v_{\nu ; n}&= -\alpha _n^2 v_{\nu ; n}. \end{aligned}$$
(75)

After multiplying (74) by \(r u_{\nu ; n}\) and (75) by \(r v_{\nu ; m}\), then subtracting the second to the first resulting equation and integrating, we get:

$$\begin{aligned} \left[ r v_{\nu ; n} \frac{{\hbox {d}} v_{\nu ; m}}{{\hbox {d}}r}- r v_{\nu ; m} \frac{{\hbox {d}} v_{\nu ; n}}{{\hbox {d}}r}\right] \bigg |_{\eta }^{1}=\left( \alpha _n^2-\alpha _m^2\right) \int _\eta ^1 r v_{\nu ; m} v_{\nu ; n} {\hbox {d}}r. \end{aligned}$$
(76)

The equation can be expanded and expressed as

$$\left( \alpha _{n}^{2}-\alpha _{m}^{2}\right) \int _{\eta} ^{1} r v_{\nu ; m} v_{\nu ; n} {\hbox {d}}r= v_{\nu ; n}(1) v_{\nu ; m}'(1)-v_{\nu ; m}(1) v_{\nu ; n}'(1)$$
(77)
$$-\eta v_{\nu ; n} (\eta ) v_{\nu ; m}'(\eta ) + \eta u_{\nu ; m} (\eta ) v_{\nu ; n}'(\eta ).$$
(78)

If the \(v_{\nu ; n}\) functions either satisfy the no-slip boundary conditions \(v_{\nu ; m} (1)=v_{\nu ; m} (\eta )= v_{\nu ; n} (1 )= v_{\nu ; n} (\eta )=0\) or the boundary conditions (72) and (73), the orthogonality condition is satisfied and the right-hand side of Eq. (78) is zero. That is:

$$\begin{aligned} \left( \alpha _n^2-\alpha _m^2\right) \int _\eta ^1 r v_{\nu ; m} v_{\nu ; n} {\hbox {d}}r= 0. \end{aligned}$$
(79)

Another important result occurs when the eigenfunctions have the same eigenvalue, then multiplying the expanded form of Eq. (74) by \(2r^2\frac{{\hbox {d}} v_{\nu ; m}}{{\hbox {d}}r}\):

$$2r^{2} v_{\nu ; m}' v_{\nu ; m}''+2r^{2}\left( v_{\nu ; m}''\right) ^{2}- 2\nu ^{2} v_{\nu ; m} v_{\nu ; m}' = -2\alpha _{m}^{2}r^{2} v_{\nu ; m} v_{\nu ; m}'$$
(80)

Using the following identities in the last expression:

$$\left[ \left( r v_{\nu ; m}'\right) ^{2}\right] '=2r^{2}v_{\nu ; m}'v_{\nu ; m}''+2r\left( v_{\nu ; m}'\right) ^{2}$$
(81)
$$\left[ \left( r v_{\nu ; m}\right) ^{2}\right] '=2r^{2}v_{\nu ; m}v_{\nu ; m}'+2r\left( v_{\nu ; m}\right) ^2$$
(82)
$$\left[ \left( r v_{\nu ; m}'\right) ^{2}+\left( \alpha _{m} r v_{\nu ; m}\right) ^{2}-\left( \nu v_{\nu ; m}\right) ^{2}\right] '=2\alpha _{m}^{2} r {v}_{\nu ; m}^{2}$$
(83)
$$\left[ r^{2}\left( v_{\nu ; m}'^{2}+\alpha _{m}^{2} v_{\nu ; m}^{2}\right) -\nu ^{2} v_{\nu ; m}^{2}\right] '=2\alpha _{m}^{2} r v_{\nu ; m}^{2}.$$
(84)

Changing both sides and integrating over the region of interest \([\eta ,1]\), then:

$$\begin{aligned} 2\alpha _m^2\int _\eta ^1 r v_{\nu ; m}^2 {\hbox {d}}r = \left[ r^2\left( v_{\nu ; m}'^2+\alpha _m^2 v_{\nu ; m}^2\right) -\nu ^2 v_{\nu ; m}^2\right] \big |_\eta ^1 \end{aligned}$$
(85)

Using again the no-slip boundary conditions \(v_{\nu ; m} (1)=v_{\nu ; m} (\eta )=0\), then

$$\begin{aligned} \int _\eta ^1 r v_{\nu ; m}^2 {\hbox {d}}r = \frac{v_{\nu ; m}'^2(1)-\eta ^2v_{\nu ; m}'^2 (\eta )}{2\alpha _m^2}. \end{aligned}$$
(86)

For the slip boundary conditions (72) and (73), we have:

$$\begin{aligned} \int _\eta ^1 r v_{\nu ; m}^2 {\hbox {d}}r =\frac{\left[ \left( 1-\frac{1}{l_{s2}}\right) ^2+\alpha _m^2-\nu ^2\right] v^2_{\nu ; m}(1)-\left[ \left( 1+\frac{\eta }{l_{s1}}\right) ^2+\eta ^2\alpha _m^2-\nu ^2\right] v^2_{\nu ; m}(\eta )}{2\alpha _m^2} \end{aligned}$$
(87)

or

$$\begin{aligned} \int _\eta ^1 r v_{\nu ; m} r v_{\nu ; n} {\hbox {d}}r = S_n\delta _{mn} \end{aligned}$$
(88)

where

$$\begin{aligned} S_n=\frac{\left[ \left( 1-\frac{1}{ls_e}\right) ^2+\alpha _n^2-\nu ^2\right] v^2_{\nu ; n}(1)-\left[ \left( 1+\frac{\eta }{ls_i}\right) ^2+\eta ^2\alpha _n^2-\nu ^2\right] v^2_{\nu ; n}(\eta )}{2\alpha _n^2}. \end{aligned}$$
(89)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Pérez, A.S., García-Ángel, V., Acuña-Ramírez, A. et al. Magnetohydrodynamic flow with slippage in an annular duct for microfluidic applications. Microfluid Nanofluid 21, 138 (2017). https://doi.org/10.1007/s10404-017-1972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1972-x

Keywords

Navigation