Skip to main content
Log in

Droplet generation in co-flow microfluidic channels with vibration

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We quantitatively characterize the perturbed droplet generation in co-flow microfluidics with mechanical vibration by estimating the fluctuations in the flow rate of inner fluid. We show the variation of generation frequency and uniformity of droplets as the frequency and amplitude of vibration. Synchronized droplet generation occurs in certain range of the vibration frequency that is predicted by our model. Besides, we scale the droplet size by incorporating the effects of vibration, inner and outer flows. The vibration is found to be capable of promoting the dripping, suppressing the jetting and even shifting the jetting into the dripping when the jet length is sufficiently short. The delayed dripping–jetting transition is characterized in a phase diagram by taking vibration into consideration. Our results unveil the mechanism of mechanically perturbed droplet generation and provide valuable guidelines for practical applications of vibration-enhanced droplet generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abate AR, Weitz DA (2008) Single-layer membrane valves for elastomeric microfluidic devices. Appl Phys Lett 92:243509

    Article  Google Scholar 

  • Abate AR, Romanowsky MB, Agresti JJ, Weitz DA (2009) Valve-based flow focusing for drop formation. Appl Phys Lett 94:023503

    Article  Google Scholar 

  • Anna SL, Mayer HC (2006) Microscale tipstreaming in a microfluidic flow focusing device. Phys Fluids 18:121512

    Article  MATH  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364

    Article  Google Scholar 

  • Augustin MA, Hemar Y (2009) Nano-and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38:902–912

    Article  Google Scholar 

  • Batchelor G (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Chan HF, Zhang Y, Ho Y-P, Chiu Y-L, Jung Y, Leong KW (2013) Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep. doi:10.1038/srep03462

    Google Scholar 

  • Chong ZZ, Tor SB, Loh NH, Wong TN, Gañán-Calvo AM, Tan SH, Nguyen N-T (2015) Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Lab Chip 15:996–999

    Article  Google Scholar 

  • Christopher G, Anna S (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336

    Article  Google Scholar 

  • Collins DJ, Neild A, deMello A, Liu A-Q, Ai Y (2015) The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15:3439–3459

    Article  Google Scholar 

  • deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402

    Article  Google Scholar 

  • Ding Y, i Solvas XC, deMello A (2015) “V-junction”: a novel structure for high-speed generation of bespoke droplet flows. Analyst 140:414–421

    Article  Google Scholar 

  • Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218

    Article  Google Scholar 

  • Driessen T, Sleutel P, Dijksman F, Jeurissen R, Lohse D (2014) Control of jet breakup by a superposition of two Rayleigh–Plateau-unstable modes. J Fluid Mech 749:275–296

    Article  Google Scholar 

  • Erb RM, Obrist D, Chen PW, Studer J, Studart AR (2011) Predicting sizes of droplets made by microfluidic flow-induced dripping. Soft Matter 7:8757–8761

    Article  Google Scholar 

  • Evans HM, Surenjav E, Priest C, Herminghaus S, Seemann R, Pfohl T (2009) In situ formation, manipulation, and imaging of droplet-encapsulated fibrin networks. Lab Chip 9:1933–1941

    Article  Google Scholar 

  • Fan J, Zhang YX, Wang LQ (2010) Formation of nanoliter bubbles in microfluidic T-junctions. NANO 5:175–184

    Article  Google Scholar 

  • García F, González H, Castrejón-Pita J, Castrejón-Pita A (2014) The breakup length of harmonically stimulated capillary jets. Appl Phys Lett 105:094104

    Article  Google Scholar 

  • Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85:2649–2651

    Article  Google Scholar 

  • Guillot P, Colin A, Utada AS, Ajdari A (2007) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys Rev Lett 99:104502

    Article  Google Scholar 

  • Guillot P, Colin A, Ajdari A (2008) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys Rev E 78:016307

    Article  Google Scholar 

  • Haber C (2006) Microfluidics in commercial applications; an industry perspective. Lab Chip 6:1118–1121

    Article  Google Scholar 

  • Hong J, Choi M, Edel JB, deMello AJ (2010) Passive self-synchronized two-droplet generation. Lab Chip 10:2702–2709

    Article  Google Scholar 

  • Khan IU, Stolch L, Serra CA, Anton N, Akasov R, Vandamme TF (2015) Microfluidic conceived pH sensitive core–shell particles for dual drug delivery. Int J Pharm 478:78–87

    Article  Google Scholar 

  • Khoshmanesh K, Almansouri A, Albloushi H, Yi P, Soffe R, Kalantar-zadeh K (2015) A multi-functional bubble-based microfluidic system. Sci Rep. doi:10.1038/srep09942

    Google Scholar 

  • Kim SH, Shim JW, Yang SM (2011) Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew Chem Int Ed 50:1171–1174

    Article  Google Scholar 

  • Kim JH, Jeon TY, Choi TM, Shim TS, Kim S-H, Yang S-M (2013) Droplet microfluidics for producing functional microparticles. Langmuir 30:1473–1488

    Article  Google Scholar 

  • Kobayashi I, Nakajima M, Nabetani H, Kikuchi Y, Shohno A, Satoh K (2001) Preparation of micron-scale monodisperse oil-in-water microspheres by microchannel emulsification. J Am Oil Chem Soc 78:797–802

    Article  Google Scholar 

  • Kong TT, Liu Z, Song Y, Wang LQ, Shum HC (2013) Engineering polymeric composite particles by emulsion-templating: thermodynamics versus kinetics. Soft Matter 9:9780–9784

    Article  Google Scholar 

  • Kong TT, Wang LQ, Wyss HM, Shum HC (2014) Capillary micromechanics for core–shell particles. Soft Matter 10:3271–3276

    Article  Google Scholar 

  • Lee W, Walker LM, Anna SL (2009) Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys Fluids 21:032103

    Article  MATH  Google Scholar 

  • Li J, Mittal N, Mak SY, Song Y, Shum HC (2015) Perturbation-induced droplets for manipulating droplet structure and configuration in microfluidics. J Micromech Microeng 25:084009

    Article  Google Scholar 

  • Meier G, Klöpper A, Grabitz G (1992) The influence of kinematic waves on jet break down. Exp Fluids 12:173–180

    Article  Google Scholar 

  • Moon B-U, Jones SG, Hwang DK, Tsai SSH (2015) Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures. Lab Chip 15:2437–2444

    Article  Google Scholar 

  • Nakano M, Komatsu J, Matsuura S-i, Takashima K, Katsura S, Mizuno A (2003) Single-molecule PCR using water-in-oil emulsion. J Biotechnol 102:117–124

    Article  Google Scholar 

  • Nguyen N-T et al (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91:084102

    Article  Google Scholar 

  • Patravale VB, Mandawgade SD (2008) Novel cosmetic delivery systems: an application update. Int J Cosmet Sci 30:19–33

    Article  Google Scholar 

  • Sauret A, Shum HC (2012) Forced generation of simple and double emulsions in all-aqueous systems. Appl Phys Lett 100:154106

    Article  Google Scholar 

  • Sauret A, Spandagos C, Shum HC (2012) Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension. Lab Chip 12:3380–3386

    Article  Google Scholar 

  • Schmid L, Franke T (2013) SAW-controlled drop size for flow focusing. Lab Chip 13:1691–1694

    Article  Google Scholar 

  • Schmid L, Franke T (2014) Acoustic modulation of droplet size in a T-junction. Appl Phys Lett 104:133501

    Article  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  • Sugiura S, Nakajima M, Seki M (2002) Prediction of droplet diameter for microchannel emulsification. Langmuir 18:3854–3859

    Article  Google Scholar 

  • Tan SH, Maes F, Semin B, Vrignon J, Baret J-C (2014a) The microfluidic jukebox. Sci Rep. doi:10.1038/srep04787

    Google Scholar 

  • Tan SH, Semin B, Baret J-C (2014b) Microfluidic flow-focusing in ac electric fields. Lab Chip 14:1099–1106

    Article  Google Scholar 

  • Umbanhowar PB, Prasad V, Weitz DA (2000) Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16:347–351

    Article  Google Scholar 

  • Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99:094502

    Article  Google Scholar 

  • Wang LQ, Zhang YX, Cheng L (2009) Magic microfluidic T-junctions: valving and bubbling. Chaos Soliton Fractals 39:1530–1537

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Zhang YX, Wang LQ (2011) Nanoliter-droplet breakup in confined T-shaped junctions. Curr Nanosci 7:471–479

    Article  Google Scholar 

  • Zhang YX, Jiang W, Wang LQ (2010) Microfluidic synthesis of copper nanofluids. Microfluid Nanofluid 9:727–735

    Article  Google Scholar 

  • Zhao C-X (2013) Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deliv Rev 65:1420–1446

    Article  Google Scholar 

  • Zhou H, Yao S (2014) A facile on-demand droplet microfluidic system for lab-on-a-chip applications. Microfluid Nanofluid 16:667–675

    Article  Google Scholar 

  • Zhu PA, Kong TT, Kang ZX, Tian XW, Wang LQ (2015) Tip-multi-breaking in capillary microfluidic devices. Sci Rep. doi:10.1038/srep11102

    Google Scholar 

  • Ziemecka I, van Steijn V, Koper GJM, Rosso M, Brizard AM, van Esch JH, Kreutzer MT (2011) Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems. Lab Chip 11:620–624

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Ho Cheung Shum for the generous use of mechanical vibrator. The financial support from the Research Grants Council of Hong Kong (GRF 17211115, GRF17207914, GRF HKU717613E, GRF HKU718111E) and the University of Hong Kong (URC 201511159108, 201411159074 and 201311159187) is gratefully acknowledged. The work is also supported in part by the Zhejiang Provincial, Hangzhou Municipal and Lin’an County Governments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiu Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 966 kb)

Supplementary material 2 (MOV 1136 kb)

Supplementary material 3 (MOV 1335 kb)

Supplementary material 4 (MOV 777 kb)

Supplementary material 5 (MOV 1700 kb)

Supplementary material 6 (PDF 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Tang, X. & Wang, L. Droplet generation in co-flow microfluidic channels with vibration. Microfluid Nanofluid 20, 47 (2016). https://doi.org/10.1007/s10404-016-1717-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1717-2

Keywords

Navigation