Skip to main content
Log in

Can liquid metal flow in microchannels made of its own oxide skin?

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Rapid surface oxidation of gallium-based liquid metals complicates their manipulation but can also be used to stabilize them into 3D shapes. We show that GaInSn can readily flow within such structures. The oxide skin microchannel walls are flexible and, if ruptured, are restored through oxidation of exposed liquid metal. These flexible-wall microchannels can be repeatedly deflated and refilled with the liquid metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Boley JW, White EL, Chiu GTC, Kramer RK (2014) Direct writing of gallium–indium alloy for stretchable electronics. Adv Funct Mater 24:3501–3507

    Article  Google Scholar 

  • Bor J, Bartholomew C (1967) The optical properties of indium, gallium and thallium. Proc Phys Soc 90:1153

    Article  Google Scholar 

  • Cademartiri L et al (2012) Electrical resistance of AgTS–S(CH2)n − 1CH3/Ga2O3/EGaIn tunneling junctions. J Phys Chem C 116:10848–10860. doi:10.1021/jp212501s

    Article  Google Scholar 

  • Cao A, Yuen P, Lin L (2007) Microrelays with bidirectional electrothermal electromagnetic actuators and liquid metal wetted contacts. J Microelectromech Syst 16:700–708

    Article  Google Scholar 

  • Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2008) Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed 120:148–150

    Article  Google Scholar 

  • Cumby BL, Hayes GJ, Dickey MD, Justice RS, Tabor CE, Heikenfeld JC (2012) Reconfigurable liquid metal circuits by Laplace pressure shaping. Appl Phys Lett 101:174102

    Article  Google Scholar 

  • Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM (2008) Eutectic Gallium–Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 18:1097–1104

    Article  Google Scholar 

  • Doudrick K, Liu S, Klein KL, Mutunga EM, Varanasi KK, Rykaczewski K (2014) Different shades of oxide: from nanoscale wetting to imprinting of gallium-based liquid metals. Langmuir 30:6867–6877

    Article  Google Scholar 

  • Dumke MF, Tombrello TA, Weller RA, Housley RM, Cirlin EH (1983) Sputtering of the gallium–indium eutectic alloy in the liquid phase. Surf Sci 124:407–422. doi:10.1016/0039-6028(83)90800-2

    Article  Google Scholar 

  • Fassler A, Majidi C (2013) 3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting. Lab Chip 13:4442–4450

    Article  Google Scholar 

  • Fassler A, Majidi C (2015) Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater 27:1928–1932

    Article  Google Scholar 

  • Goldstein J, Newbury DE, Echlin P, Joy DC, Romig AD Jr, Lyman CE, Fiori C, Lifshin E (2012) Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer, New York.

    Google Scholar 

  • Gozen BA, Tabatabai A, Ozdoganlar OB, Majidi C (2014) High-density soft-matter electronics with micron-scale line width. Adv Mater 26:5211–5216. doi:10.1002/adma.201400502

    Article  Google Scholar 

  • Irshad W, Peroulis D (2009) A silicon-based galinstan magnetohydrodynamic pump. In: Power MEMS, Washinton DC, pp 127–129

  • Jeong SH, Hagman A, Hjort K, Jobs M, Sundqvist J, Wu Z (2012) Liquid alloy printing of microfluidic stretchable electronics. Lab Chip 12:4657–4664. doi:10.1039/C2LC40628D

    Article  Google Scholar 

  • Joshipura ID, Ayers HR, Majidi C, Dickey MD (2015) Methods to pattern liquid metals. J Mater Chem C 3:3834–3841. doi:10.1039/C5TC00330J

    Article  Google Scholar 

  • Khan MR, Hayes GJ, Zhang S, Dickey MD, Lazzi G (2012) A pressure responsive fluidic microstrip open stub resonator using a liquid metal alloy. IEEE Microw Wirel Compon Lett 22:577–579. doi:10.1109/LMWC.2012.2223754

    Article  Google Scholar 

  • Khan MR, Eaker CB, Bowden EF, Dickey MD (2014a) Giant and switchable surface activity of liquid metal via surface oxidation. Proc Natl Acad Sci USA 111:14047–14051

    Article  Google Scholar 

  • Khan MR, Trlica C, Dickey MD (2014b) Recapillarity: electrochemically controlled capillary withdrawal of a liquid metal alloy from microchannels. Adv Funct Mater 25:671–678

    Article  Google Scholar 

  • Khan MR, Trlica C, So J-H, Valeri M, Dickey MD (2014c) Influence of water on the interfacial behavior of gallium liquid metal alloys. ACS Appl Mater Interfaces 6:22467–22473. doi:10.1021/am506496u

    Article  Google Scholar 

  • Khan MR, Trlica C, Dickey MD (2015) Microfluidics: recapillarity: electrochemically controlled capillary withdrawal of a liquid metal alloy from microchannels. Adv Funct Mater 25:654

    Article  Google Scholar 

  • Kim H-J, Son C, Ziaie B (2008) A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl Phys Lett 92:011904

    Article  Google Scholar 

  • Kim D, Lee D-W, Choi W, Lee J-B (2013a) A super-lyophobic 3-D PDMS channel as a novel microfluidic platform to manipulate oxidized Galinstan. J Microelectromech Syst 22:1267–1275

    Article  Google Scholar 

  • Kim D, Thissen P, Viner G, Lee D-W, Choi W, Chabal YJ, Lee J-B (2013b) Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl Mater Interfaces 5:179–185. doi:10.1021/am302357t

    Article  Google Scholar 

  • Kim D, Lee Y, Lee D-W, Choi W, Lee J-BJ (2013b) Hydrochloric acid-impregnated paper for liquid metal microfluidics. In: 2013 The 17th international conference on transducers and Eurosensors XXVII. IEEE, pp 2620–2623

  • Knoblauch M, Hibberd JM, Gray JC, van Bel AJ (1999) A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nat Biotech 17:906–909

    Article  Google Scholar 

  • Koo C, LeBlanc BE, Kelley M, Fitzgerald HE, Huff GH, Han A (2014) Manipulating liquid metal droplets in microfluidic channels with minimized skin residues toward tunable RF applications. J Microelectromech Syst 24:1069–1076

    Article  Google Scholar 

  • Kramer RK, Majidi C, Sahai R, Wood RJ (2011a) Soft curvature sensors for joint angle proprioception. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, San Francisco, pp 1919–1926. doi:10.1109/IROS.2011.6094701

    Google Scholar 

  • Kramer RK, Majidi C, Wood RJ (2011b) Wearable tactile keypad with stretchable artificial skin. IEEE/RSJ international conference on robots and Automation. IEEE, Shanghai, pp 1103–1107. doi:10.1109/ICRA.2011.5980082

    Google Scholar 

  • Kramer RK, Boley JW, Stone HA, Weaver JC, Wood RJ (2013a) Effect of microtextured surface topography on the wetting behavior of eutectic gallium–indium alloys. Langmuir 30:533–539. doi:10.1021/la404356r

    Article  Google Scholar 

  • Kramer RK, Majidi C, Wood RJ (2013b) Masked deposition of gallium–indium alloys for liquid-embedded elastomer conductors. Adv Funct Mater 23:5292–5296. doi:10.1002/adfm.201203589

    Article  Google Scholar 

  • Kubo M, Li X, Kim C, Hashimoto M, Wiley BJ, Ham D, Whitesides GM (2010) Stretchable microfluidic radiofrequency antennas. Adv Mater 22:2749–2752. doi:10.1002/adma.200904201

    Article  Google Scholar 

  • Ladd C, So J-H, Muth J, Dickey MD (2013) 3D printing of free standing liquid metal microstructures. Adv Mater 25:5081–5085. doi:10.1002/adma.201301400

    Article  Google Scholar 

  • Li M, Yu B, Behdad N (2010) Liquid-tunable frequency selective surfaces. IEEE Microw Wirel Compon Lett 20:423–425

    Article  Google Scholar 

  • Li H, Yang Y, Liu J (2012) Printable tiny thermocouple by liquid metal gallium and its matching metal. Appl Phys Lett 101:073511

    Article  Google Scholar 

  • Li G, Parmar M, Kim D, Lee J-BJ, Lee D-W (2014) PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan. Lab Chip 14:200–209

    Article  Google Scholar 

  • Liu S, Sun X, Hildreth OJ, Rykaczewski K (2015) Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing. Lab Chip 15:1376–1384. doi:10.1039/C4LC01341G

    Article  Google Scholar 

  • Ma K-Q, Liu J (2007) Nano liquid-metal fluid as ultimate coolant. Phys Lett A 361:252–256

    Article  Google Scholar 

  • Michaud HO, Teixidor J, Lacour SP (2015) Soft metal constructs for large strain sensor membrane. Smart Mater Struct 24:035020

    Article  Google Scholar 

  • Mohammed MG, Dickey MD (2013) Strain-controlled diffraction of light from stretchable liquid metal micro-components. Sens Actuat A 193:246–250

    Article  Google Scholar 

  • Ota H et al (2014) Highly deformable liquid-state heterojunction sensors. Nat Commun. doi:10.1038/ncomms6032

    Google Scholar 

  • Paik JK, Kramer RK, Wood RJ (2011) Stretchable circuits and sensors for robotic origami. In: IEEE/RSJ international Conference on intelligent robots and systems. IEEE, San Francisco, pp 414–420. doi:10.1109/IROS.2011.6094746

    Google Scholar 

  • Park J et al (2012) Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat Comm 3:916

    Article  Google Scholar 

  • Ponce Wong RD, Posner JD, Santos VJ (2012) Flexible microfluidic normal force sensor skin for tactile feedback. Sens Actuat A 179:62–69

    Article  Google Scholar 

  • Regan M, Pershan PS, Magnussen O, Ocko B, Deutsch M, Berman L (1997a) X-ray reflectivity studies of liquid metal and alloy surfaces. Phys Rev B 55:15874

    Article  Google Scholar 

  • Regan M, Tostmann H, Pershan PS, Magnussen O, DiMasi E, Ocko B, Deutsch M (1997b) X-ray study of the oxidation of liquid-gallium surfaces. Phys Rev B 55:10786

    Article  Google Scholar 

  • Scharmann F, Cherkashinin G, Breternitz V, Knedlik C, Hartung G, Weber T, Schaefer JA (2004) Viscosity effect on GaInSn studied by XPS. Surf Interface Anal 36:981–985. doi:10.1002/sia.1817

    Article  Google Scholar 

  • Sen P, Chang-Jin K (2009) Microscale liquid-metal switches—a review. IEEE Trans Ind Electron 56:1314–1330. doi:10.1109/TIE.2008.2006954

    Article  Google Scholar 

  • Shan F, Liu G, Lee W, Lee G, Kim I, Shin B (2005) Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition. J Appl Phys 98:023504

    Article  Google Scholar 

  • Sivan V, Tang SY, O’Mullane AP, Petersen P, Eshtiaghi N, Kalantar-zadeh K, Mitchell A (2013) Liquid metal marbles. Adv Funct Mater 23:144–152

    Article  Google Scholar 

  • Speckbrock G, Kamitz S, Alt M, Schmitt H (1997) Low melting gallium, indium, and tin eutectic alloys, and thermometers employing same. US Patent US6019509A

  • Swensen JP, Odhner LU, Araki B, Dollar AM (2014) Printing 3D electrical traces in additive manufactured parts for injection of low melting temperature metals. J Mech Robot 7:021004

    Article  Google Scholar 

  • Tabatabai A, Fassler A, Usiak C, Majidi C (2013) Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir 29:6194–6200

    Article  Google Scholar 

  • Thelen J, Dickey MD, Ward T (2012) A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab Chip 12:3961–3967

    Article  Google Scholar 

  • Vetrovec J, Litt AS, Copeland DA, Junghans J, Durkee R (2013) Liquid metal heat sink for high-power laser diodes. SPIE Proc 8605:1–7. doi:10.1117/12.2005357

    Google Scholar 

  • Wenjiang S, Edwards RT, Kim JY (2006) Electrostatically actuated metal-droplet microswitches integrated on CMOS chip. J Microelectromech Syst 15:879–889. doi:10.1109/JMEMS.2006.878877

    Article  Google Scholar 

  • Wissman J, Lu T, Majidi C (2013) Soft-matter electronics with stencil lithography. IEEE Sens. doi:10.1109/ICSENS.2013.6688217

    Google Scholar 

  • Yang H, Lightner CR, Dong L (2011) Light-emitting coaxial nanofibers. ACS Nano 6:622–628. doi:10.1021/nn204055t

    Article  Google Scholar 

  • Zhang Q, Liu J (2013) Nano liquid metal as an emerging functional material in energy management, conversion and storage. Nano Energy 2:863–872. doi:10.1016/j.nanoen.2013.03.002

    Article  Google Scholar 

  • Zhang Q, Gao Y, Liu J (2013) Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A 1–7

  • Zheng Y, He Z-Z, Yang J, Liu J (2013a) Fully automatic liquid metal printer towards personal electronics manufacture arXiv:1312.0617

  • Zheng Y, Zhang Q, Liu J (2013b) Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 3:112117-1–112117-6

    Google Scholar 

Download references

Acknowledgments

KR acknowledges startup funding from Ira A. Fulton Schools of Engineering at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rykaczewski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 554 kb)

Supplementary material 2 (AVI 4074 kb)

Supplementary material 3 (MP4 10459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Sun, X., Kemme, N. et al. Can liquid metal flow in microchannels made of its own oxide skin?. Microfluid Nanofluid 20, 3 (2016). https://doi.org/10.1007/s10404-015-1665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-015-1665-2

Keywords

Navigation