Skip to main content
Log in

Nafion-film-based micro–nanofluidic device for concurrent DNA preconcentration and separation in free solution

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper presents a Nafion-film-based micro–nanofluidic device for concurrent DNA preconcentration and separation. The principle of the device is based on the combination of (a) ion concentration polarization phenomenon at the junction of the microchannel and the nanochannels in the Nafion film to form opposing electrophoretic and electroosmotic forces acting on the DNAs and (b) end-labeled-free solution electrophoresis to harness the charge-to-mass ratio for molecular differentiation. The experiments successfully demonstrated concurrent preconcentration and separation of DNA mixture in free solution within 240 s, yielding concentration ratios up to 1,150× and separation resolution of 1.85. The effect of applied electric field on the concentration and separation performance was also investigated. The device can be used as a key sample preparation element in conjunction with micro- or nano-fluidic sensors for microTAS functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abgrall P, Nguyen NT (2008) Nanofluidic devices and their applications. Anal Chem 80(7):2326–2341

    Article  Google Scholar 

  • Auroux P-A, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74(12):2637–2652

    Article  Google Scholar 

  • Buel E, LaFountain M, Schwartz M, Walkinshaw M (2001) Evaluation of capillary electrophoresis performance through resolution measurements. J Forensic Sci 46(2):341–345

    Google Scholar 

  • Cheow LF, Ko SH, Kim SJ, Kang KH, Han J (2010) Increasing the sensitivity of enzyme-linked immunosorbent assay using multiplexed electrokinetic concentrator. Anal Chem 82(8):3383–3388

    Article  Google Scholar 

  • Dhopeshwarkar R, Sun L, Crooks RM (2005) Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug. Lab Chip 5(10):1148–1154

    Article  Google Scholar 

  • Haynes RD, Meagher RJ, Won J-I, Bogdan FM, Barron AE (2005) Comblike, monodisperse polypeptoid drag-tags for DNA separations by end-labeled free-solution electrophoresis (ELFSE). Bioconjugte Chem 16(4):929–938

    Article  Google Scholar 

  • Kim T, Meyhöfer E (2008) Nanofluidic concentration of selectively extracted biomolecule analytes by microtubules. Anal Chem 80(14):5383–5390

    Article  Google Scholar 

  • Lee JH, Song Y-A, Han J (2008a) Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 8(4):596–601

    Article  Google Scholar 

  • Lee JH, Song Y-A, Tannenbaum SR, Han J (2008b) Increase of reaction rate and sensitivity of low-abundance enzyme assay using micro/nanofluidic preconcentration chip. Anal Chem 80(9):3198–3204

    Article  Google Scholar 

  • Mani A, Zangle TA, Santiago JG (2009) On the propagation of concentration polarization from microchannel− nanochannel interfaces part I: analytical model and characteristic analysis. Langmuir 25(6):3898–3908

    Article  Google Scholar 

  • Mayer P, Slater GW, Drouin G (1994) Theory of DNA sequencing using free-solution electrophoresis of protein-DNA complexes. Anal Chem 66(10):1777–1780

    Article  Google Scholar 

  • Meagher RJ, Thaitrong N (2012) Microchip electrophoresis of DNA following preconcentration at photopatterned gel membranes. Electrophoresis 33(8):1236–1246

    Article  Google Scholar 

  • Meagher RJ, Won JI, McCormick LC, Nedelcu S, Bertrand MM, Bertram JL, Drouin G, Barron AE, Slater GW (2005) End-labeled free-solution electrophoresis of DNA. Electrophoresis 26(2):331–350

    Article  Google Scholar 

  • Meagher RJ, Won J-I, Coyne JA, Lin J, Barron AE (2008) Sequencing of DNA by free-solution capillary electrophoresis using a genetically engineered protein polymer drag-tag. Anal Chem 80(8):2842–2848

    Article  Google Scholar 

  • Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5(6):1147–1155

    Article  Google Scholar 

  • Prakash S, Piruska A, Gatimu EN, Bohn PW, Sweedler JV, Shannon MA (2008) Nanofluidics: systems and applications. IEEE Sens J 8(5):441–450

    Article  Google Scholar 

  • Ren H, Karger AE, Oaks F, Menchen S, Slater GW, Drouin G (1999) Separating DNA sequencing fragments without a sieving matrix. Electrophoresis 20(12):2501–2509

    Article  Google Scholar 

  • Reyes DR, Iossifidis D, Auroux P-A, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74(12):2623–2636

    Article  Google Scholar 

  • Shen M, Yang H, Sivagnanam V, Gijs MAM (2010) Microfluidic protein preconcentrator using a microchannel-integrated Nafion strip: experiment and modeling. Anal Chem 82(24):9989–9997

    Article  Google Scholar 

  • Sparreboom W, Van Den Berg A, Eijkel JCT (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4(11):713–720

    Article  Google Scholar 

  • Wang Y-C, Han J (2008) Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 8(3):392–394

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  • Won J-I, Meagher RJ, Barron AE (2005) Protein polymer drag-tags for DNA separations by end-labeled free-solution electrophoresis. Electrophoresis 26(11):2138–2148

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184

    Article  Google Scholar 

  • Zangle TA, Mani A, Santiago JG (2009) On the propagation of concentration polarization from microchannel− nanochannel interfaces part II: numerical and experimental study. Langmuir 25(6):3909–3916

    Article  Google Scholar 

  • Zangle TA, Mani A, Santiago JG (2010) Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem Soc Rev 39(3):1014–1035

    Article  Google Scholar 

Download references

Acknowledgments

This research is sponsored by NIH/NHGRI under grant number 5R44HG004290-03. We would like to thank Prof. Jongyoon Han of Electrical Engineering and Computer Science, and Biological Engineering at Massachusetts Institute of Technology for guidance on the project and Prof. James W. Schneider of Chemical Engineering at Carnegie Mellon University for help discussion about the ELFSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 3944 kb)

Supplementary material 2 (MPG 1110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Wang, Y., Garson, C. et al. Nafion-film-based micro–nanofluidic device for concurrent DNA preconcentration and separation in free solution. Microfluid Nanofluid 17, 693–699 (2014). https://doi.org/10.1007/s10404-014-1357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1357-3

Keywords

Navigation