Skip to main content
Log in

Design and implementation of fluidic micro-pulleys for flow control on centrifugal microfluidic platforms

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Microfluidic discs have been employed in a variety of applications for chemical analyses and biological diagnostics. These platforms offer a sophisticated fluidic toolbox, necessary to perform processes that involve sample preparation, purification, analysis, and detection. However, one of the weaknesses of such systems is the uni-directional movement of fluid from the disc centre to its periphery due to the uni-directionality of the propelling centrifugal force. Here we demonstrate a mechanism for fluid movement from the periphery of a hydrophobic disc towards its centre that does not rely on the energy supplied by any peripheral equipment. This method utilizes a ventless fluidic network that connects a column of working fluid to a sample fluid. As the working fluid is pushed by the centrifugal force to move towards the periphery of the disc, the sample fluid is pulled up towards the centre of the disc analogous to a physical pulley where two weights are connected by a rope passed through a block. The ventless network is analogous to the rope in the pulley. As the working fluid descends, it creates a negative pressure that pulls the sample fluid up. The sample and working fluids do not come into direct contact, and it allows the freedom to select a working fluid with physical properties markedly different from those of the sample. This article provides a demonstration of the “micro-pulley” on a disc, discusses underlying physical phenomena, provides design guidelines for fabrication of micro-pulleys on discs, and outlines a vision for future micro-pulley applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abi-Samra K, Clime L, Kong L, Gorkin R, Kim T-H, Cho Y-K, Madou M (2011) Thermo-pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluid. doi:10.1007/s10404-011-0830-5

    Google Scholar 

  • Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111

    Article  Google Scholar 

  • Burtis C, Mailen J, Johnson W, Scott C, Tiffany T, Anderson N (1972) Development of a miniature fast analyzer. Clin Chem 18(8):753–761

    Google Scholar 

  • Chen JM, Huang PC, Lin MG (2008) Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluid Nanofluid 4(5):427–437. doi:10.1007/s10404-007-0196-x

    Article  Google Scholar 

  • Cho YK, Lee JG, Park JM, Lee BS, Lee Y, Ko C (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7(5):565–573. doi:10.1039/B616115d

    Article  Google Scholar 

  • Ducree J, Haeberle S, Lutz S, Pausch S, von Stetten F, Zengerle R (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17(7):S103–S115. doi:10.1088/0960-1317/17/7/S07

    Article  Google Scholar 

  • Focke M, Stumpf F, Roth G, Zengerle R, von Stetten F (2010) Centrifugal microfluidic system for primary amplification and secondary real-time PCR. Lab Chip 10(23):3210–3212

    Article  Google Scholar 

  • Garcia-Cordero JL, Basabe-Desmonts L, Ducree J, Ricco AJ (2010) Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces. Microfluid Nanofluid 9(4–5):695–703. doi:10.1007/s10404-010-0585-4

    Article  Google Scholar 

  • Gorkin R, Clime L, Madou M, Kido H (2010a) Pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluid 9(2–3):541–549. doi:10.1007/s10404-010-0571-x

    Article  Google Scholar 

  • Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park J-M, Kim J, Kim H, Madou M, Cho Y-K (2010b) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758–1773. doi:10.1039/b924109d

    Article  Google Scholar 

  • Gorkin R, Nwankire CE, Gaughran J, Zhang X, Donohoe GG, Rook M, O’Kennedy R, Ducree J (2012a) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12(16):2894–2902. doi:10.1039/C2lc20973j

    Article  Google Scholar 

  • Gorkin R, Soroori S, Southard W, Clime L, Veres T, Kido H, Kulinsky L, Madou M (2012b) Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluid Nanofluid 12(1–4):345–354. doi:10.1007/s10404-011-0878-2

    Article  Google Scholar 

  • Grumann M, Geipel A, Riegger L, Zengerle R, Ducree J (2005) Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5(5):560–565. doi:10.1039/B418253g

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110

    Article  Google Scholar 

  • Kazarine A, Kong MC, Templeton EJ, Salin ED (2012) Automated liquid–liquid extraction by pneumatic recirculation on a centrifugal microfluidic platform. Anal Chem 84(16):6939–6943

    Article  Google Scholar 

  • Kido H, Micic M, Smith D, Zoval J, Norton J, Madou M (2007) A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloid Surf B 58(1):44–51. doi:10.1016/j.colsurfb.2007.03.015

    Article  Google Scholar 

  • Kirby D, Siegrist J, Kijanka G, Zavattoni L, Sheils O, O’Leary J, Burger R, Ducrée J (2012) Centrifugo-magnetophoretic particle separation. Microfluidics Nanofluidics 13(6):899–908

    Article  Google Scholar 

  • Kong MC, Salin ED (2010) Pneumatically pumping fluids radially inward on centrifugal microfluidic platforms in motion. Anal Chem 82(19):8039–8041

    Article  Google Scholar 

  • Kong MC, Bouchard AP, Salin ED (2011) Displacement pumping of liquids radially inward on centrifugal microfluidic platforms in motion. Micromachines 3(1):1–9

    Article  Google Scholar 

  • Lai S, Wang S, Luo J, Lee LJ, Yang S-T, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76(7):1832–1837

    Article  Google Scholar 

  • Li C, Dong X, Qin J, Lin B (2009) Rapid nanoliter DNA hybridization based on reciprocating flow on a compact disk microfluidic device. Anal Chim Acta 640(1):93–99

    Article  Google Scholar 

  • Love LJ, Jansen JF, McKnight TE, Roh Y, Phelps TJ (2004) A magnetocaloric pump for microfluidic applications. NanoBiosci IEEE Trans 3(2):101–110

    Article  Google Scholar 

  • Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Madou MJ, Lu Y, Lai S, Koh CG, Lee LJ, Wenner BR (2001) A novel design on a CD disc for 2-point calibration measurement. Sens Actuators A Phys Sens 91(3):301–306

    Article  Google Scholar 

  • Madou M, Zoval J, Jia GY, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628. doi:10.1146/annurev.bioeng.8.061505.095758

    Article  Google Scholar 

  • Mark D, van Oordt T, Strohmeier O, Roth G, Drexler J, Eberhard M, Niedrig M, Patel P, Zgaga-Griesz A, Bessler W, Weidmann M, Hufert F, Zengerle R, von Stetten F (2012) Automated and miniaturized detection of biological threats with a centrifugal microfluidic system. SPIE 8367. doi:10.1117/12.919933

  • Noroozi Z, Kido H, Madou MJ (2011) Electrolysis-induced pneumatic pressure for control of liquids in a centrifugal system. J Electrochem Soc 158(11):P130–P135

    Article  Google Scholar 

  • Siegrist J, Gorkin R, Clime L, Roy E, Peytavi R, Kido H, Bergeron M, Veres T, Madou M (2010) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluid 9(1):55–63. doi:10.1007/s10404-009-0523-5

    Article  Google Scholar 

  • Steigert J, Grumann M, Brenner T, Riegger L, Harter J, Zengerle R, Ducrée J (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6:1040–1044. doi:10.1039/b607051p

    Article  Google Scholar 

  • Thio THG, Ibrahim F, Al-Faqheri W, Moebius J, Khalid NS, Soin N, Kahar MKBA, Madou MJ (2013) Push pull microfluidics on a multi-level 3D CD. Lab Chip 13:3199–3209

    Article  Google Scholar 

  • Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6(1):1–16

    Article  Google Scholar 

  • Zehnle S, Schwemmer F, Roth G, Von Stetten F, Zengerle R, Paust N (2012) Centrifugo-dynamic inward pumping of liquids on a centrifugal microfluidic platform. Lab Chip 12(24):5142–5145

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sanaz Moslemi-Asl and Alexandra Perebikovsky for their assistance with the graphics and Sheldon Smilo (OmegaTek) for the spinning disc image acquisition/processing. This work was supported by the National Institute of Health grant 1 R01 AI089541-01 and sponsored by WCU (World Class University) program (R32-2008-000-20054-0) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salar Soroori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 118 kb)

Supplementary material 2 (WMV 34931 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soroori, S., Kulinsky, L., Kido, H. et al. Design and implementation of fluidic micro-pulleys for flow control on centrifugal microfluidic platforms. Microfluid Nanofluid 16, 1117–1129 (2014). https://doi.org/10.1007/s10404-013-1277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1277-7

Keywords

Navigation