Skip to main content
Log in

Drop-on-demand inkjet printing of alumina nanoparticles in rectangular microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A procedure has been developed for applying a piezoelectric drop-on-demand inkjet printing technology to deposit metal oxide nanoparticles such as alumina in stainless steel microchannels. The printability of inks having different solid concentrations, co-solvents, hydro-soluble polymers, viscosities, and surface tensions was tested. The effect of piezoelectric activation parameters on properties of generated microdrops such as drop size and velocity was investigated. Depending upon the ink composition, three different types of coated film shapes were observed in rectangular microchannels. A uniform coating in rectangular microchannels was achieved by correctly tuning the directional stability of microdrop, ink composition, and microdrop properties. It is observed that drying effects such as coffee ring effect have a large impact on the final shape of the deposited alumina layers. The adhesion of printed alumina layers was tested after drying and calcination in harsh environments such as ultrasonic baths, and it was satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe K, Hashimoto Y, Yatsushiro S, Yamamura S, Tanaka M, Ooie T, Baba Y, Kataoka M (2012) Quantitative analysis of plasma interleiukin-6 by immunoassay on microchip. J Phys Conf Ser 352(1):012044

    Article  Google Scholar 

  • Bogy D, Talke F (1984) Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices. IBM J Res Dev 28(3):314–321

    Article  Google Scholar 

  • Chen CT, Chiu CL, Hsu CY, Tseng ZF, Chuang CT (2011) Inkjet-printed polymeric microstructures in n-sided regular polygonal cavities. J Microelectromech Syst 20(4):1001–1009

    Article  Google Scholar 

  • Cui L, Zhang J, Zhang X, Huang L, Wang Z, Li Y, Gao H, Zhu S, Wang T, Yang B (2012) Suppression of the coffee ring effect by hydrosoluble polymer additives. ACS Appl Mater Interfaces 4(5):2775–2780

    Article  Google Scholar 

  • De Gans BJ, Duineveld P, Schubert U (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213

    Article  Google Scholar 

  • Deegan R, Bakajin O, Dupont T, Huber G, Nagel S, Witten T (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829

    Article  Google Scholar 

  • Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Ann Rev Mater Res 40(1):395–414

    Article  Google Scholar 

  • Derby B (2011) Inkjet printing ceramics: from drops to solid. J Eur Ceram Soc 31(14, SI):2543–2550

    Article  Google Scholar 

  • Eom SH, Senthilarasu S, Uthirakumar P, Yoon SC, Lim J, Lee C, Lim HS, Lee J, Lee SH (2009) Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Org Electron 10(3):536–542

    Article  Google Scholar 

  • Fathi S, Dickens P (2012) Nozzle wetting and instabilities during droplet formation of Molten Nylon materials in an inkjet printhead. J Manuf Sci Eng-Trans ASME 134(4):041008

    Article  Google Scholar 

  • Han W, Lin Z (2012) Learning from “Coffee Rings”: ordered structures enabled by controlled evaporative self-assembly. Angew Chem-Int Edit 51(7):1534–1546

    Article  Google Scholar 

  • Hendriks CE, Smith PJ, Perelaer J, Vanden Berg AMJ, Schubert US (2008) “Invisible” silver tracks produced by combining hot-embossing and inkjet printing. Adv Funct Mater 18(7):1031–1038

    Article  Google Scholar 

  • Ho CC, Murata K, Steingart DA, Evans JW, Wright PK (2009) A super ink jet printed zinc-silver 3D microbattery. J Micromech Microeng 19(9):094013

    Article  Google Scholar 

  • Hoath SD, Hutchings IM, Martin GD, Tuladhar TR, Mackley MR, Vadillo D (2009) Links between ink rheology, drop-on-demand jet formation, and printability. J Imaging Sci Technol 53(4):41208-1–41208-8

    Google Scholar 

  • Hoath SD, Harlen OG, Hutchings IM (2012a) Jetting behavior of polymer solutions in drop-on-demand inkjet printing. J Rheol 56(5):1109–1127

    Article  Google Scholar 

  • Hoath SD, Jung S, Hsiao WK, Hutchings IM (2012b) How PEDOT:PSS solutions produce satellite-free inkjets. Org Electron 13(12):3259–3262

    Article  Google Scholar 

  • Hoath SD, Hsiao WK, Jung S, Martin GD, Hutchings I, Morrison NF, Harlen OG (2013) Drop speeds from drop-on-demand ink-jet print heads. J Imaging Sc Technol 57(1):010503-1–010503-11

    Google Scholar 

  • Hsiao WK, Hoath SD, Martin G, Hutchings I (2012) Aerodynamic effects in ink-jet printing on a moving web. In: Proceedings of the IS&T’s NIP28: 28th international conference on digital printing technology and digital fabrication. IS&T, Springfield, VA, pp 412–415

  • Hwang SM, Kwon OJ, Kim JJ (2007) Method of catalyst coating in micro-reactors for methanol steam reforming. Appl Catal A-Gen 316(1):83–89

    Article  Google Scholar 

  • Jacot-Descombes L, Gullo MR, Cadarso VJ, Brugger J (2012) Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing. J Micromech Microeng 22(7):074012

    Article  Google Scholar 

  • Jang D, Kim D, Moon J (2009) Influence of fluid physical properties on ink-jet printability. Langmuir 25(5):2629–2635

    Article  Google Scholar 

  • Jeong S, Kim D, Moon J (2008) Ink-jet-printed organic-inorganic hybrid dielectrics for organic thin-film transistors. J Phys Chem C 112(14):5245–5249

    Article  Google Scholar 

  • Jung S, Hoath SD, Hutchings IM (2013) The role of viscoelasticity in drop impact and spreading for inkjet printing of polymer solution on a wettable surface. Microfluid Nanofluid 14(1–2):163–169

    Article  Google Scholar 

  • Kim J, J Y, JH K, Kim T, Koo H (2011) Ceramic inks for manufacturing ceramic thick films by inkjet printing. Patent: US 2011/0232524A1

  • Korvink J, Smith P, Shin D, Brand O, Fedder G, Hierold C, Tabata O (2012) Inkjet-based micromanufacturing. Advanced micro and nanosystems. Wiley, Weinheim

    Book  Google Scholar 

  • Kuscer D, Stavber G, Trefalt G, Kosec M (2012) Formulation of an aqueous titania suspension and its patterning with ink-jet printing technology. J Am Ceram Soc 95(2):487–493

    Article  Google Scholar 

  • Kwon KS (2010) Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve. J Micromech Microeng 20(11):115005

    Article  Google Scholar 

  • Lee E (2003) Microdrop generation. Nano- and microscience, engineering, technology and medicine series. CRC Press, London

    Google Scholar 

  • Lee A, Sudau K, Ahn KH, Lee SJ, Willenbacher N (2012) Optimization of experimental parameters to suppress nozzle clogging in inkjet printing. Ind Eng Chem Res 51(40):13195–13204

    Article  Google Scholar 

  • Lejeune M, Chartier T, Dossou-Yovo C, Noguera R (2009) Ink-jet printing of ceramic micro-pillar arrays. J Eur Ceram Soc 29(5):905–911

    Article  Google Scholar 

  • Leng J (2010) Drying of a colloidal suspension in confined geometry. Phys Rev E 82:021405

    Article  Google Scholar 

  • Liou TM, Chan CY, Shih KC (2009) Study of the characteristics of polymer droplet deposition in fabricated rectangular microcavities. J Micromech Microeng 19(6):065028

    Article  Google Scholar 

  • Loffelmann U, Korvink JG, Hendriks C, Schubert U, Smith P (2011) Ink jet printed silver lines formed in microchannels exhibit lower resistance than their unstructured counterparts. J Imaging Sc Technol 55(4):040302-1–040302-6

    Google Scholar 

  • Lu G, Tan HY, Neild A, Liew OW, Yu Y, Ng TW (2010) Liquid filling in standard circular well microplates. J Appl Phys 108(12):124701

    Article  Google Scholar 

  • Magdassi S (2010) The chemistry of inkjet inks. World Scientific, London

    Google Scholar 

  • Maki KL, Kumar S (2011) Fast evaporation of spreading droplets of colloidal suspensions. Langmuir 27(18):11347–11363

    Article  Google Scholar 

  • Oh Y, Kim J, Yoon YJ, Kim H, Yoon HG, Lee SN, Kim J (2011) Inkjet printing of Al2O3 dots, lines, and films: from uniform dots to uniform films. Curr Appl Phys 11(3, S):S359–S363

    Article  Google Scholar 

  • Peela NR, Mubayi A, Kunzru D (2009) Washcoating of gamma-alumina on stainless steel microchannels. Catal Today 147:S17–S23

    Article  Google Scholar 

  • Perelaer J, Smith PJ, Wijnen MMP, van den Bosch E, Eckardt R, Ketelaars PHJM, Schubert US (2009) Droplet tailoring using evaporative inkjet printing. Macromol Chem Phys 210(5):387–393

    Article  Google Scholar 

  • Reis N, Ainsley C, Derby B (2005) Viscosity and acoustic behavior of ceramic suspensions optimized for phase-change ink-jet printing. J Am Ceram Soc 88(4):802–808

    Article  Google Scholar 

  • Renken A, Kiwi-Minsker L (2010) Chapter 2—microstructured catalytic reactors. In: Gates BC, Knözinger H (eds) Advances in catalysis, vol 53. Academic Press, San Diego, CA, pp 47–122

    Google Scholar 

  • Shin KY, Lee SH, Oh JH (2011) Solvent and substrate effects on inkjet-printed dots and lines of silver nanoparticle colloids. J Micromech Microeng 21(4):045012

    Article  Google Scholar 

  • Soltman D, Subramanian V (2008) Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5):2224–2231

    Article  Google Scholar 

  • Talbot EL, Berson A, Bain CD (2012) Drying and deposition of picolitre droplets of colloidal suspensions in binary solvent mixtures. In: Proceedings of the IS&T’s NIP28: 28th international conference on digital printing technology and digital fabrication. IS&T, Springfield, VA, pp 420–423

  • Taylor AD, Kim EY, Humes VP, Kizuka J, Thompson LT (2007) Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J Power Sources 171(1):101–106

    Article  Google Scholar 

  • Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4(4):703–713

    Article  Google Scholar 

  • Wallenstein KJ, Russel WB (2011) The theory of delamination during drying of confined colloidal suspensions. J Phys-Condes Matter 23(19):194104

    Article  Google Scholar 

  • Wijshoff H (2010) The dynamics of the piezo inkjet printhead operation. Phys Rep-Rev Sec Phys Lett 491(4–5):77–177

    Google Scholar 

Download references

Acknowledgments

S. Lee acknowledges the financial support by the Helmholtz Research School of Energy-Related Catalysis. The authors would like to thank Mrs. Uta Gerhards and Mr. Florian Messerschmidt for their technical support for the elemental analysis of thin films. Discussions with Mr. Suresh Kumar Garlapati (INT-KIT) are also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aswani K. Mogalicherla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogalicherla, A.K., Lee, S., Pfeifer, P. et al. Drop-on-demand inkjet printing of alumina nanoparticles in rectangular microchannels. Microfluid Nanofluid 16, 655–666 (2014). https://doi.org/10.1007/s10404-013-1260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1260-3

Keywords

Navigation