Skip to main content
Log in

Microfluidic spatial growth of vertically aligned ZnO nanostructures by soft lithography for antireflective patterning

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hierarchical assemblies of nanostructured building blocks on conducting substrates are significant for construction of functional devices. Microfluidics is powerful but less exploited tool for spatial organization or growth of functionally sophisticated nanostructures with precise control. In this paper, we introduce a simple but unique strategy for the hydrothermal synthesis and patterned assembly of ZnO nanostructures within microchannels by soft lithography technique. Optical/antireflection properties of such hierarchically structured nanostructures are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    Article  Google Scholar 

  • Dittrich PS, Heule M, Renaud P, Manz A (2006) On-chip extrusion of lipid vesicles and tubes through microsized apertures. Lab Chip 6:488–493

    Article  Google Scholar 

  • Djurisic AB, Chem X, Leung YH, Ng AMC (2012) ZnO nanostructures: growth, properties and applications. J Mater Chem 22:6526–6535

    Article  Google Scholar 

  • Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69

    Article  Google Scholar 

  • Fan HJ, Werner P, Zacharias M (2006) Semiconductor nanowires: from self-organization to patterned growth. Small 2:700–717

    Article  Google Scholar 

  • Gao X, Li X, Yu W (2005) Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. J Phys Chem B 109:1155–1161

    Article  Google Scholar 

  • Govender K, Boyle DS, O’Brien P, Binks D, West D, Coleman D (2002) Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Adv Mater 14:1221–1224

    Article  Google Scholar 

  • Greyson EC, Babayan Y, Odom TW (2004) Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv Mater 16:1348–1352

    Article  Google Scholar 

  • Han X, Zhou X, Jiang Y, Xie Z (2012) The preparation of spiral, ZnO nanostructures by top–down wet-chemical etching and their related properties. J Mater Chem 22:10924–10928

    Article  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  Google Scholar 

  • Jung MH, Lee H (2011) Selective patterning of ZnO nanorods on silicon substrates using nanoimprint lithography. Nanoscale Res Lett 6:159

    Article  Google Scholar 

  • Kang HW, Yeo J, Hwang JO, Hong S, Lee P, Han SY, Lee JH, Rho YS, Kim SO, Ko SH, Sung HJ (2011) Simple ZnO nanowires patterned growth by microcontact printing for high performance field emission device. J Phys Chem C 115:11435–11441

    Article  Google Scholar 

  • Kenis PJA, Ismagilov RF, Takayama S, Whitesides GM, Li S, White HS (2000) Fabrication inside microchannels using fluid flow. Acc Chem Res 33:841–847

    Article  Google Scholar 

  • Kim DS, Ji R, Fan HJ, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, Gosele U, Zacharias M (2007) Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. Small 3:76–80

    Article  Google Scholar 

  • Kim J, Lib Z, Park I (2011) Direct synthesis and integration of functional nanostructures in microfluidic devices. Lab Chip 11:1946–1951

    Article  Google Scholar 

  • Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459

    Article  Google Scholar 

  • Lee SH, Lee HJ, Oh D, Lee SW, Goto H, Buckmaster R, Yasukawa T, Matsue T, Hong SK, Ko HC et al (2006) Control of the ZnO nanowires nucleation site using microfluidic channels. J Phys Chem B 110:3856–3859

    Article  Google Scholar 

  • Lin YR, Yang SS, Tsai SY, Hsu HC, Wu ST, Chen IC (2006) Visible photoluminescence of ultrathin ZnO nanowire at room temperature. Cryst Growth Des 6:1951–1955

    Article  Google Scholar 

  • Liu H, Piret G, Sieber B, Laureyns J, Roussel P, Xu W, Boukherroub R, Szunerits S (2009) Electrochemical impedance spectroscopy of ZnO nanostructures. Electrochem Commun 11:945–949

    Article  Google Scholar 

  • Manbachi A, Shrivastava S, Cioffi M, Chung BG, Moretti M, Demirci U, Yliperttulaa M, Khademhosseini A (2008) Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels. Lab Chip 8:747–754

    Article  Google Scholar 

  • Menard E, Rogers JA (2007) Stamping techniques for micro- and nanofabrication. In: Bhushan B (ed) Springer handbook of nanotechnology. Springer, Berlin, pp 279–298

    Chapter  Google Scholar 

  • Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4:1247–1252

    Article  Google Scholar 

  • Ong WL, Low QX, Huang W, Van Kan JA, Ho GW (2012) Patterned growth of vertically-aligned ZnO nanorods on a flexible platform for feasible transparent and conformable electronics applications. J Mater Chem 22:8518–8524

    Article  Google Scholar 

  • Park WI, Yi GC (2004) Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv Mater 16:87–90

    Article  Google Scholar 

  • Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5:491–502

    Article  Google Scholar 

  • Qu L, Vaia RA, Dai L (2011) Multilevel, multicomponent microarchitectures of vertically-aligned carbon nanotubes for diverse applications. ACS Nano 5:994–1002

    Article  Google Scholar 

  • Sieber B, Liu H, Piret G, Laureyns J, Roussel P, Gelloz B, Szunerits S, Boukherroub R (2009) Synthesis and luminescence properties of (N-doped) ZnO nanostructures from a dimethylformamide aqueous solution. J Phys Chem C 113:13643–13650

    Article  Google Scholar 

  • Sieber B, Addad A, Szunerits S, Boukherroub R (2010) Stacking faults-induced quenching of the UV luminescence in ZnO. J Phys Chem Lett 1:3033–3038

    Article  Google Scholar 

  • Thangawng L, Howell PB, Richards JJ, Erickson JS, Ligler FS (2009) A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers. Lab Chip 9:3126–3130

    Article  Google Scholar 

  • Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  Google Scholar 

  • Wang X, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4:423–426

    Article  Google Scholar 

  • Wang WZ, Zeng BQ, Yang J, Poudel B, Huang JY, Naughton MJ, Ren ZF (2006a) Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv Mater 18:3275–3278

    Article  Google Scholar 

  • Wang J, Bunimovich YL, Sui G, Sawas S, Wang J, Guo Y, Heath JR, Tseng HR (2006) Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. Chem Commun 3075–3077

  • Wang H, Wong ASW, Ho GW (2007) Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir 23:11960–11963

    Article  Google Scholar 

  • Wang Y, Li X, Lu G, Quan X, Chen G (2008) Highly oriented 1-D ZnO nanorod arrays on zinc foil: direct growth from substrate, optical properties and photocatalytic activities. J Phys Chem C 112:7332–7336

    Article  Google Scholar 

  • Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098

    Article  Google Scholar 

  • Yang PD, Yan RX, Fardy M (2010) Semiconductor nanowire: what’s next? Nano Lett 10:1529–1536

    Article  Google Scholar 

  • Yen BKH, Gunther A, Schmidt MA, Jensen KF, Bawendi MGA (2005) A microfabricated gas–liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. Angew Chem Int Ed 44:5447–5451

    Article  Google Scholar 

  • Zeng H, Cai W, Hu J, Duan G, Liu P (2006) Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation. Appl Phys Lett 88:171910–171913

    Article  Google Scholar 

  • Zeng H, Xu X, Bando Y, Gautam UK, Zhai T, Fang X, Liu B, Golberg D (2009) Template deformation-tailored ZnO nanorod/nanowire arrays: full growth control and optimization of field-emission. Adv Funct Mat 19:3165–3172

    Article  Google Scholar 

  • Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W (2010) Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv Funct Mat 20:561–572

    Article  Google Scholar 

Download references

Acknowledgments

We thank Council of Scientific and Industrial Research (CSIR) of India for financially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjusha V. Shelke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehare, R.S., Devarapalli, R.R., Yenchalwar, S.G. et al. Microfluidic spatial growth of vertically aligned ZnO nanostructures by soft lithography for antireflective patterning. Microfluid Nanofluid 15, 1–9 (2013). https://doi.org/10.1007/s10404-012-1119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1119-z

Keywords

Navigation