Skip to main content
Log in

On the dynamic contact angle in simulation of impinging droplets with sharp interface methods

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Effects of dynamic contact angle models on the flow dynamics of an impinging droplet in sharp interface simulations are presented in this article. In the considered finite element scheme, the free surface is tracked using the arbitrary Lagrangian–Eulerian approach. The contact angle is incorporated into the model by replacing the curvature with the Laplace–Beltrami operator and integration by parts. Further, the Navier-slip with friction boundary condition is used to avoid stress singularities at the contact line. Our study demonstrates that the contact angle models have almost no influence on the flow dynamics of the non-wetting droplets. In computations of the wetting and partially wetting droplets, different contact angle models induce different flow dynamics, especially during recoiling. It is shown that a large value for the slip number has to be used in computations of the wetting and partially wetting droplets in order to reduce the effects of the contact angle models. Among all models, the equilibrium model is simple and easy to implement. Further, the equilibrium model also incorporates the contact angle hysteresis. Thus, the equilibrium contact angle model is preferred in sharp interface numerical schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bayer IS, Megaridis CM (2006) Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics. J Fluid Mech 558:415–449

    Article  MATH  Google Scholar 

  • Bracke M, Voeght FD, Joos P (1989) The kinetics of wetting: the dynamic contact angle. Progr Colloid Polym Sci 79:142–149

    Article  Google Scholar 

  • Bristeau MO, Glowinski R, Periaux J (1987) Numerical methods for the Navier–Stokes equations. application to the simulation of compressible and incompressible flows. Comput Phys 6:73–188

    Article  Google Scholar 

  • Chen Y, Kulenovic R, Mertz R (2009) Numerical study on the formation of taylor bubbles in capillary tubes. Int J Thermal Sci 48:234–242

    Article  Google Scholar 

  • Cox RG (1986) The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J Fluid Mech 168:169–194

    Article  MATH  Google Scholar 

  • Crouzeix M, Raviart PA (1973) Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal Numer 7:33–76

    MathSciNet  Google Scholar 

  • Dussan EB (1976) The moving contact line: the slip boundary condition. J Fluid Mech 77(4):665–684

    Article  MATH  Google Scholar 

  • Dussan EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11:371–400

    Article  Google Scholar 

  • Dziuk G (1991) An algorithm for evolutionary surfaces. Numer Math 58:603–611

    Article  MathSciNet  MATH  Google Scholar 

  • Fukai J, Shiiba Y, Yamamoto T, Miyatake O, Poulikakos D, Megaridis CM, Zhao Z (1995) Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling. Phys Fluids 7(2):236–247

    Article  Google Scholar 

  • Ganesan S (2006) Finite element methods on moving meshes for free surface and interface flows. PhD Thesis, Otto-von-Guericke-Universität, Fakultät für Mathematik, Magdeburg

  • Ganesan S, Tobiska L (2005) Finite element simulation of a droplet impinging a horizontal surface. In: Proceedings of the algoritmy 2005, Slovak Technical University, Bratislava, pp 1–11

  • Ganesan S, Tobiska L (2008) An accurate finite element scheme with moving meshes for computing 3D-axisymmetric interface flows. Int J Numer Methods Fluids 57(2):119–138

    Article  MathSciNet  MATH  Google Scholar 

  • Ganesan S, Tobiska L (2009) Modelling and simulation of moving contact line problems with wetting effects. Comput Visual Sci 12:329–336

    Article  MathSciNet  MATH  Google Scholar 

  • Gennes PGD (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    Article  Google Scholar 

  • Haley PJ, Miksis MJ (1991) The effect of the contact line on droplet spreading. J Fluid Mech 223:57–81

    Article  MathSciNet  MATH  Google Scholar 

  • Hocking L (1995) On the contact angels in evaporating liquids. Phys Fluids 7:2950–2955

    Article  MathSciNet  MATH  Google Scholar 

  • Hocking LM (1976) A moving fluid interface on a rough surface. J Fluid Mech 76(4):801–817

    Article  MATH  Google Scholar 

  • Hocking LM (1983) The spreading of a thin drop by gravity and capillarity. Q J Mech Appl Math 36:55–69

    Article  MATH  Google Scholar 

  • Hocking LM (1992) Rival contact-angle models and the spreading of drops. J Fluid Mech 239:671–681

    Google Scholar 

  • Hocking LM, Davis SH (2002) Inertial effects in time-dependent motion of tin films and drops. J Fluid Mech 467:1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffman RL (1975) A study of the advancing interface. I. Interface shape in liquid–gas systems. J Colloid Interface Sci 50(2):228–241

    Article  Google Scholar 

  • Huh C, Scriven LE (1971) Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J Colloid Interface Sci 35:85–101

    Article  Google Scholar 

  • Johnson A, Tezduyar T (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Meth Appl Mech Eng 119(1-2):73–94

    Article  MATH  Google Scholar 

  • Kistler SF (1993) Hydrodynamics of wetting. In: Berg J (ed) Wettability. Marcel Dekker, New York, pp 311–429

  • Rannacher R (2004) Incompressible viscous flows. In: Stein E, de Borst R, Hughes T (eds) Encyclopedia of computational mechanics, chap 6, vol 3. Wiley,London, pp 155–182

  • Renardy M, Renardy Y, Li J (2001) Numerical simulation of moving contact line problems using a volume-of-fluid method. J Comput Phys 171:243–263

    Article  MATH  Google Scholar 

  • Saha AA, Mitra SK (2009) Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow. J Colloid Interface Sci 339(2):461–480

    Article  Google Scholar 

  • Schönfeld F, Hardt S (2009) Dynamic contact angles in CFD simulations. Comput Fluids 38(4):757–764

    Article  MATH  Google Scholar 

  • Spelt PDM (2005) A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J Comput Phys 207:389–404

    Article  MathSciNet  MATH  Google Scholar 

  • T-S Jiang OHSG, Slattery JC (1979) Correlation for dynamic contact angle. J Colloid Interface Sci 69:74–77

    Article  Google Scholar 

  • Turek S (1999) Efficient solvers for incompressible flow problems. An algorithmic and computational approach. Springer, Berlin

    Book  MATH  Google Scholar 

  • Šikalo S, Wilhelm HD, Roisman IV, Jakirlić S, Tropea C (2005) Dynamic contact angle of spreading droplets: Experiments and simulations. Phys Fluids 17(062103):1–13

    Google Scholar 

  • Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sashikumaar Ganesan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, S. On the dynamic contact angle in simulation of impinging droplets with sharp interface methods. Microfluid Nanofluid 14, 615–625 (2013). https://doi.org/10.1007/s10404-012-1080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1080-x

Keywords

Navigation