Skip to main content
Log in

Phase transfer catalyzed esterification: modeling and experimental studies in a microreactor under parallel flow conditions

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A liquid–liquid phase transfer catalyzed (PTC) esterification reaction of 4-t-butylphenol in aqueous phase (1 M sodium hydroxide solution) and 4-methoxybenzoyl chloride in organic phase (dichloromethane) in a microchannel under parallel laminar flow conditions was studied in this work. Tetrabutylammonium bromide was used as the PTC. Stable liquid–liquid hydrodynamic flow and a defined specific interfacial area in a microreactor offer considerable benefits over conventional batch reactors and are crucial to study interactions between kinetics and mass transfer effects. Mentioned features were used to develop a 3D mathematical model considering convection in the flow direction, diffusion in all spatial directions, and reactions in organic and aqueous phases. Results have shown a much higher mass transfer rate of the PTC between both phases as the one predicted by the 3D mathematical model. It may be assumed that the instability of parallel flow, along with the mass transfer of catalyst between both phases, causes rippling and erratic pulsation at the interface which then leads to interfacial convection and increased mass transfer rates. With a proposed correlation for mass transfer enhancement due to interfacial convection, all the experimental data were successfully predicted by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agble D, Mendes-Tatsis MA (2000) The effect of surfactants on interfacial mass transfer in binary liquid–liquid systems. Int J Heat Mass Transf 43(6):1025–1034. doi:10.1016/s0017-9310(99)00184-2

    Article  MATH  Google Scholar 

  • Ahmed-Omer B, Barrow D, Wirth T (2008) Effect of segmented fluid flow, sonication and phase transfer catalysis on biphasic reactions in capillary microreactors. Chem Eng J 135(Supplement 1):S280–S283. doi:10.1016/j.cej.2007.07.017

    Article  Google Scholar 

  • Aljbour S, Yamada H, Tagawa T (2010) Sequential reaction-separation in a microchannel reactor for liquid–liquid phase transfer catalysis. Top Catal 53(7–10):694–699. doi:10.1007/s11244-010-9507-7

    Article  Google Scholar 

  • Asai S, Nakamura H, Tanabe M, Sakamoto K (1993) Distribution and dissociation equilibria of phase-transfer catalysts, tetrabutylammonium salts. Ind Eng Chem Res 32(7):1438–1441. doi:10.1021/ie00019a018

    Article  Google Scholar 

  • Bakker CAP, Fentener van Vlissingen FH, Beek WJ (1967) The influence of the driving force in liquid—liquid extraction—a study of mass transfer with and without interfacial turbulence under well-defined conditions. Chem Eng Sci 22(10):1349–1355. doi:10.1016/0009-2509(67)80025-3

    Article  Google Scholar 

  • Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12(3):422–433. doi:10.1039/C1LC20582J

    Article  Google Scholar 

  • Bhattacharya A (1996) General kinetic model for liquid–liquid phase-transfer-catalyzed reactions. Ind Eng Chem Res 35(3):645–652. doi:10.1021/ie950483t

    Article  Google Scholar 

  • Chao SH, Meldrum DR (2009) Spontaneous, oscillatory liquid transport in surface tension-confined microfluidics. Lab Chip 9(7):867–869. doi:10.1039/b819887j

    Article  Google Scholar 

  • Dehmlow EV (1974) Phase-transfer catalyzed 2-phase reactions in preparative organic-chemistry. Angew Chem Int Edit Engl 13(3):170–179. doi:10.1002/anie.197401701

    Article  Google Scholar 

  • Ehrfeld W, Hessel V, Löwe H (2000) Microreactors. Wiley, Weinheim

    Book  Google Scholar 

  • Hisamoto H, Saito T, Tokeshi M, Hibara A, Kitamori T (2001) Fast and high conversion phase-transfer synthesis exploiting the liquid–liquid interface formed in a microchannel chip. Chem Commun 24:2662–2663. doi:10.1039/b106494k

    Article  Google Scholar 

  • Jähnisch K, Hessel V, Löwe H, Baerns M (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43(4):406–446. doi:10.1002/anie.200300577

    Article  Google Scholar 

  • Ji J, Zhao Y, Guo L, Liu B, Ji C, Yang P (2012) Interfacial organic synthesis in a simple droplet-based microfluidic system. Lab Chip 12(7):1373–1377. doi:10.1039/C2LC40052A

    Article  Google Scholar 

  • Li JW, Carr PW (1997) Accuracy of empirical correlations for estimating diffusion coefficients in aqueous organic mixtures. Anal Chem 69(13):2530–2536. doi:10.1021/ac961005a

    Article  Google Scholar 

  • Lindenbaum S, Boyd GE (1964) Osmotic and activity coefficients for the symmetrical tetraalkyl ammonium halides in aqueous solution at 25°1. J Phys Chem 68(4):911–917. doi:10.1021/j100786a038

    Article  Google Scholar 

  • Pohar A, Lakner M, Plazl I (2012) Parallel flow of immiscible liquids in a microreactor: modeling and experimental study. Microfluid Nanofluid 12(1–4):307–316. doi:10.1007/s10404-011-0873-7

    Article  Google Scholar 

  • Pursell MR, Mendes MA, Stuckey DC (2009) Interactions between surfactants and biomass during liquid–liquid extraction. Biotechnol Progr 25(6):1686–1694. doi:10.1002/btpr.268

    Google Scholar 

  • Sherwood T, Wei J (1957) Interfacial phenomena in liquid extraction. Ind Eng Chem 49(6):1030–1034. doi:10.1021/ie50570a038

    Article  Google Scholar 

  • Sinkovec E, Krajnc M (2011) Phase transfer catalyzed Wittig reaction in the microtube reactor under liquid–liquid slug-flow pattern. Org Process Res Dev 15(4):817–823. doi:10.1021/op200061j

    Article  Google Scholar 

  • Starks CM (1971) Phase-transfer catalysis 1. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts. J Am Chem Soc 93(1):195–199. doi:10.1021/ja00730a033

    Article  Google Scholar 

  • Starks CM, Liota CL, Halpem M (1994) Phase-transfer catalysis: fundamentals. Applications and Industrial Perspectives, New York

    Book  Google Scholar 

  • Sternling CV, Scriven LE (1959) Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE J 5(4):514–523. doi:10.1002/aic.690050421

    Article  Google Scholar 

  • Stojkovic G, Plazl I, Znidarsic-Plazl P (2011) L-Malic acid production within a microreactor with surface immobilised fumarase. Microfluid Nanofluid 10(3):627–635. doi:10.1007/s10404-010-0696-y

    Article  Google Scholar 

  • Ueno M, Hisamoto H, Kitamori T, Kobayashi S (2003) Phase-transfer alkylation reactions using microreactors. Chem Commun 8:936–937

    Article  Google Scholar 

  • Wang M-L, Chang S-W (1994) Model of the kinetics of synthesizing formaldehyde acetals by phase-transfer catalysis. Ind Eng Chem Res 33(6):1606–1611. doi:10.1021/ie00030a022

    Article  MathSciNet  Google Scholar 

  • Wang ML, Wu HS (1990) Effects of mass transfer and extraction of quaternary salts on a substitution reaction by phase-transfer catalysis. J Org Chem 55(8):2344–2350. doi:10.1021/jo00295a021

    Article  Google Scholar 

  • Wang ML, Yang HM (1991) Dynamics of phase-transfer catalyzed reaction for the allylation of 2,4,6-tribromophenol. Chem Eng Sci 46(2):619–627. doi:10.1016/0009-2509(91)80021-p

    Article  Google Scholar 

  • Wirth T (ed) (2008) Microreactors in organic synthesis and catalysis. Wiley, KGaA, Weinheim

    Google Scholar 

  • Wu HS (1993) Phase-plane modeling of a liquid–liquid phase transfer catalyzed reaction. Ind Eng Chem Res 32(7):1323–1327. doi:10.1021/ie00019a006

    Article  Google Scholar 

  • Yang H-M (1998) Dynamic model for mass transfer and reaction in liquid/liquid phase-transfer catalysis. Ind Eng Chem Res 37(2):398–404. doi:10.1021/ie960346b

    Article  Google Scholar 

  • Zhao Y, Chen G, Yuan Q (2006) Liquid-liquid two-phase flow patterns in a rectangular microchannel. AIChE J 52(12):4052–4060. doi:10.1002/aic.11029

    Article  Google Scholar 

  • Znidarsic-Plazl P, Plazl I (2007) Steroid extraction in a microchannel system-mathematical modelling and experiments. Lab Chip 7(7):883–889

    Article  Google Scholar 

Download references

Acknowledgments

The financial support for this work by the Slovenian Ministry of Higher Education, Science and Technology (Grant P2-0191), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Krajnc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šinkovec, E., Pohar, A. & Krajnc, M. Phase transfer catalyzed esterification: modeling and experimental studies in a microreactor under parallel flow conditions. Microfluid Nanofluid 14, 489–498 (2013). https://doi.org/10.1007/s10404-012-1067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1067-7

Keywords

Navigation